(3.236.214.19) 您好!臺灣時間:2021/05/10 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂易儒
研究生(外文):Yi-JuLu
論文名稱:具漏感能量回收之順向返馳式雙向轉換器研製
論文名稱(外文):Design and Implementation of a Bidirectional DC-DC Forward/Flyback Converter with Leakage Energy Recycled
指導教授:梁從主
指導教授(外文):Tsorng-Juu Liang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:73
中文關鍵詞:順向返馳式電源轉換器漏感回收雙向電源轉換器
外文關鍵詞:forward/flyback converterleakage energy recycledbidirectional converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製一具有漏感能量回收之雙向電源轉換器,電路架構使用錯相式順向返馳式轉換器,並使用兩組變壓器來減少電流峰值,以降低功率元件上的導通損失並提升效率。當電路操作於降壓模式時,電路之特性為錯相式順向返馳式電路,開關最大電壓會被箝位在輸入電壓,並回收變壓器的漏感能量至箝位電容或輸入端。當雙向電路操作於升壓模式時,電路之特性為輸入並聯,輸出串聯之返馳式電路,開關最大電壓亦會被箝位在輸入電壓,並回收變壓器的漏感能量到輸入端。本文先對於所提出之轉換器電路,分析雙向電能轉換之動作原理及穩態特性。最後,實作一雙向轉換器,高低電壓分別為200 V/24 V,最大功率為500 W之電路,以驗證所提架構之可行性,降壓和升壓模式最高效率分別為95.5 %與92.3 %。
In this thesis, a bidirectional interleaved forward-flyback DC-DC converter with leakage energy recycled is proposed. The proposed converter uses two transformers to reduce the current stress on the power components to reduce the conduction loss and improve the efficiency. When the proposed converter is operated in step-down stage, the topology is the interleaved forward-flyback converter. The voltage stress on power switches is clamped at the input voltage and the leakage energy of the transformer is recycled to the clamping capacitor and input voltage source. When the converter is operated in step-up stage, two flyback converters are operated in parallel and in series in input side and output side, respectively. The voltage stress of power switches is clamped at input voltage and the leakage energy of the transformer is recycled back to input voltage source. Finally, a laboratory prototype circuit with 200 V/24 V and output power 500 W is implemented to verify the feasibility of the proposed converter, the highest efficiency in step-up and step-down are 95.5 % and 92.3 %, respectively.
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Organization 3
Chapter 2 Introduction of Bidirectional DC-DC Converter 4
2.1 Nonisolated Bidirectional DC-DC Converter 5
2.1.1 Bidirectional Buck/Boost DC-DC Converter 5
2.1.2 Bidirectional Cascode DC-DC Converter 6
2.1.3 Bidirectional Coupled-inductor DC-DC Converter 7
2.2 Isolated Bidirectional DC-DC Converter 8
2.2.1 Bidirectional Flyback DC-DC Converter 8
2.2.2 Bidirectional Half-Bridge/Push-Pull DC-DC Converter 9
2.2.3 Bidirectional Full-Bridge/Full-Bridge DC-DC Converter 10
2.2.4 Bidirectional Forward/Flyback DC-DC Converter 11
Chapter 3 Analysis and Parameters Design of the Proposed Forward/Flyback Bidirectional Converter 13
3.1. Introduction of the Proposed Biderational Converter 13
3.2 Analysis of Proposed Converter in Step-down Stage 16
3.2.1 Operational Principle in Step-down Stage 16
3.2.2 Steady-State Analysis in Step-down Stage 28
3.3 Analysis of Proposed Converter in Step-up Stage 34
3.3.1 Analysis of Proposed Converter in Step-up Stage 34
3.3.2 Steady-State Analysis in Step-up Stage 40
Chapter 4 Hardware Implementation and Experimental Results 44
4.1. Main Topology and Specifications of Proposed Converter 44
4.2. Key Components Selection and Parameters Design 45
4.3. Experimental Results and Discussions 49
4.3.1 Experimental Results and Discussions in Step-down Stage 50
4.3.2 Experimental Results and Discussions in Step-up Stage 60
Chapter 5 Conclusions and Future Works 70
5.1 Conclusions 70
5.2 Future Works 71
References 72


[1]S. Rahman, “Green power: what is it and where can we find it? in IEEE power & energy magazine, Jan/Feb. 2003.
[2]Y. T. Chen and S. Y. Wei, “A multiple-winding bidirectional flyback converter used in the solar system, in Next-Generation Electronics (ISNE), 2013 IEEE International Symposium on, pp. 130-133, Feb. 2013
[3]M. H. Todorovic, L. Palma, and P. Enjeti, “Design of a wide input range DC-DC converter with a robust power control scheme suitable for fuel cell power conversion, IEEE Trans. on Industrial Electron., vol. 55, no. 3, pp. 1247-1255, Mar. 2008.
[4]F. Blaabjerg, M. Liserre, and K. Ma, “Power electronics converters for wind turbine systems, IEEE Trans. on Industry Applications, vol. 48, no. 2, pp. 708-719, Mar. 2012.
[5]D. A. Halamay, T. K. A. Brekken, A. Simmons, and S. McArthur, “Reserve requirement impacts of large-scale integration of wind, solar, and ocean wave power generation, IEEE Trans. on Sustainable Energy, vol. 2, no. 3, pp. 321-328, July. 2011.
[6]H. Ardi, R. R. Ahrabi, and S. N. Ravadanegh, “Non-isolated bidirectional DC–DC converter analysis and implementation, IET Power Electron., vol. 7, pp. 3033-3044, Dec. 2014.
[7]M. Delshad and H. Farzanehfard, “A new isolated bidirectional buck-boost PWM converter, Power Electronic & Drive Systems & Technologies Conference (PEDSTC), 2010, pp. 41-45, Feb. 2010.
[8]K. H. Chao and C. H. Huang, “Bidirectional DC–DC soft-switching converter for stand-alone photovoltaic power generation systems, IET Power Electron., vol. 7, pp. 1557-1565, Jun. 2014.
[9]C. C. Lin, L. S. Yang, and G.W. Wu, “Study of a non-isolated bidirectional DC-DC converter, IET Power Electron., vol. 6, pp. 30-37, Jun. 2013.
[10]C. M. Hong, L. S. Yang, T. J. Liang, and J. F. Chen, “Novel bidirectional DC-DC converter with high step-up/down voltage gain, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 60-66, Sep. 2009.
[11]H. L. Do, “Nonisolated bidirectional zero-voltage-switching DC–DC converter, IEEE Trans. on Power Electron., vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
[12]P. Das, S. A. Mousavi, and G. Moschopoulos, “Analysis and design of a nonisolated bidirectional ZVS-PWM DC–DC converter with coupled inductors, IEEE Trans. on Power Electron., vol. 25, no. 10, pp. 2630-2641, Oct. 2010.
[13]B. L. Narasimharaju, S. P. Dubey, and S. P. Singh, “Coupled inductor bidirectional DC-DC converter for improved performance, in Industrial Electronics, Control & Robotics (IECR), 2010 International onference on, pp. 28-33, Dec. 2010.
[14]L. Jiang, X. Zhang, C. Yin, C. Mi, S. Li, and M. Zhang, “A novel soft-switching bidirectional DC–DC converter with coupled inductors, in Applied Power Electronics Conference and Exposition (APEC), pp. 3040-3044, Mar. 2013.
[15]G. Chen, Y. S. Lee, S. Y. R. Hui, D. Xu, and Y. Wang, “Actively clamped bidirectional flyback converter, IEEE Trans. on Industrial Electron., vol. 47, no. 4, pp. 770-779, Aug. 2000.
[16]W. S. Liu, J. F. Chen, T. J. Liang, R. L. Lin, and C. H. Liu, “Analysis, design, and control of bidirectional cascoded configuration for a fuel cell hybrid power system, IEEE Trans. on Power Electron., vol. 25, no. 6, pp. 1565-1575, Jun. 2010.
[17]P. Thummala, D. Maksimovic, Z. Zhang, and M. A. E. Andersen, “Digital control of a high voltage (2.5 kV) bidirectional DC-DC flyback converter for driving a capacitive incremental actuator, IEEE Trans. on Power Electron., vol. 31, no. 12, pp. 8500-8516, Dec. 2016.
[18]T. Anno and H. Koizumi, “Double-input bidirectional DC/DC converter using cell-voltage equalizer with flyback transformer, IEEE Trans. on Power Electron., vol. 30, no. 6, pp. 2923-2934, Jun. 2015.
[19]H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Three-port triple-half-bridge bidirectional converter with zero-voltage switching, IEEE Trans. on Power Electron., vol. 23, no. 2, pp. 782-792, Mar. 2008.
[20]S. Park and Y. Song, “An interleaved half-bridge bidirectional dc-dc converter for energy storage system applications, in Power Electronics and ECCE Asia (ICPE & ECCE), 2011 IEEE 8th International Conference on, pp. 2029-2034, May. 2011.
[21]F. Xue, R. Yu, W. Yu, A. Q. Huang, and Y. Du, “A novel bi-directional DC-DC converter for distributed energy storage device, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1126-1130, Mar. 2015.
[22]F. Z. Peng, Hui Li, G. J. Su, and J. S. Lawler, “A new ZVS bidirectional DC–DC converter for fuel cell and battery application, IEEE Trans. on Power Electron., vol. 19, no. 6, pp. 54-65, Jan. 2004.
[23]T. F. Wu, Y. C. Chen, J. G. Yang, and C. L. Kuo, “Isolated bidirectional full-bridge DC–DC converter with a flyback snubber, IEEE Trans. on Power Electron., vol. 25, no. 7, pp. 1915-1922, Jul. 2010.
[24]R. Ramachandran and M. Nymand, “A 98.8% efficient bidirectional full-bridge isolated dc-dc GaN converter, in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 609-614, Mar. 2016.
[25]B. Zhao, Q. Song, W. Liu, and Y. Sun, “Dead-time effect of the high-frequency isolated bidirectional full-bridge DC–DC converter: comprehensive theoretical analysis and experimental verification, IEEE Trans. on Power Electron., vol. 29, no. 4, pp. 1667-1680, Apr. 2014.
[26]S. M. Chen, T. J. Liang, and Y. H. Huang, “A isolated bidirectional interleaved flyback converter for battery backup system application, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), pp. 1328-1331, May. 2013.
[27]F. Zhang and Y. Yan, “Novel forward–flyback hybrid bidirectional DC–DC converter, IEEE Trans. on Power Electron., vol. 56, no. 5, pp. 1578-1584, May. 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔