跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/23 12:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江智煜
研究生(外文):Chih-YuChiang
論文名稱:應用強力刮齒法於六軸工具機刮削內齒輪之研究
論文名稱(外文):Power Skiving of Internal Gears on Six-Axis Machine Tool
指導教授:林昌進
指導教授(外文):Psang-Dain Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:124
中文關鍵詞:齒輪加工強力刮齒D-H 座標設定法則工具機
外文關鍵詞:Gear MachiningPower SkivingD-H notationMachine Tools
相關次數:
  • 被引用被引用:2
  • 點閱點閱:578
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
齒輪是工業界重要的關鍵性機械元件,傳統的齒輪設計與製造,在學界與業界已有不少的研究。傳統的齒輪製造方式,一般是用成型刀具在齒輪專用機上加工,精度也得到不錯的控制,而加工效率的提升也進一步成為重要的課題。因此,美國Gleason公司結合滾齒與鉋齒的優點,發展一種全新的齒輪加工方式,稱為強力刮齒法,可用於加工內、外圓柱齒輪。由於其高速的連續刮削能力,使得齒輪加工效率大幅提升2倍至8倍,尤其在內齒輪加工上,相較於傳統的加工方法,其效率表現更佳。目前強力刮齒法只能用在專用機台,技術掌控於外國。若此技術能生根於台灣,將可提升台灣齒輪業的競爭力。
本論文旨在利用Mori-Seiki NTX1000六軸工具機做為工具母機,研究強力刮齒法於內齒輪的切削。此研究運用修正型D-H設定法則來進行六軸工具機建模,推導六軸工具機的正向運動學及逆向運動學,解出切削內齒輪的NC數值函數。最後,將刮齒刀與內齒輪的參數輸入FORTRAN程式,即可得切削內齒輪的NC程式。並使用SolidWorks軟體模擬切削姿態,最後在Mori-Seiki NTX1000六軸工具機上實際切削三種不同材料的內齒輪,分別為代木、塑鋼與鋁合金。齒輪參數為模數1.25 mm、壓力角20°、齒數86、右螺旋15°、厚度25 mm。以切削代木為例,在進給率為20(mm/min)的條件下,所需的加工時間約76秒。利用德國Klingelnberg P26齒輪量測儀,量測其齒輪精度可達到DIN 8~9級。本研究成功地將該方法應用在非專用機台,驗證本論文已掌握強力刮齒法的部分技術。
SUMMARY

Gears are one of the important transmission elements in industry. They can be manufactured by a variety of processes, including casting, forging, extrusion, powder metallurgy, and blanking. Recently, a new technology, referred as power skiving, is developed by Gleason Corporation. Its skiving process for machining internal gears is 2-8 times faster than shaping, and more flexible than broaching, due to skiving’s continuous chip removal capability.
In this thesis a modified Denavit-Hartenberg (D-H) notation is introduced to model a Mori-Seiki NTX1000 six-axis machine tool. The NC data equations for machining internal gears are then derived in terms of the machine’s link parameters. Using the proposed NC equations, cutting simulation is performed using SolidWorks. To verify the validity of the method, we then performed several cutting experiments on the machine tool while using wood, plastic steel, and Aluminium alloys to cutting internal gears (with thickness 25 mm, modulus 1.25, pressure angle 20°, number of tooth 86, right helix angle 15° and pitch diameter 111.29 mm.) Finally, the gears were inspected on gear measuring center P26 (Klingelnberg, Germany) to check the gear profile and lead precision. It only take 76 sec to cutting such an internal gear. Furthermore, it is also found that the methodology of power skiving developed in this thesis can make the internal gear cutting highly efficient and productive.

Keywords: Gear Machining, Power Skiving, D-H notation, Machine Tools.
摘要 i
Abstract ii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xiv
符號說明 xv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 齒輪各部位名稱 2
1.3 齒輪的基本特性 4
1.4 齒輪的精度標準 7
1.5 文獻回顧 9
1.5.1 鉋齒的文獻回顧 9
1.5.2 滾齒的文獻回顧 11
1.5.3 強力刮齒法的文獻回顧 12
1.5.4 多軸加工技術與刀具路徑的文獻回顧 18
1.5.5 切削與NC程式設計的文獻回顧 20
1.6 齊次座標轉換矩陣 22
1.7 D-H座標設定法則 25
1.8 研究方法與內容概要 26
第二章 刮齒刀的位姿設計 29
2.1 內齒輪座標系的位姿矩陣 29
2.2 刮齒刀座標系的位姿矩陣 31
2.3 刮齒刀相對於內齒輪的位姿矩陣 34
2.4 刮齒刀座標系原點相對於內齒輪的速度分析 35
2.5 刮齒刀節點相對於內齒輪的速度分析 36
2.6 刮齒刀與內齒輪的轉速分析 38
第三章 六軸工具機建模 41
3.1 Mori-Seiki NTX1000六軸工具機介紹 41
3.2 修正型D-H座標設定法則 44
3.3 六軸工具機正向運動學 48
第四章 工具機NC數值函數 57
4.1 六軸工具機逆向運動學 57
4.2 六軸工具機各軸初始偏置量 61
4.3 六軸工具機NC數值函數 65
第五章 線上量測工件原點與主動參數 68
5.1 線上量測與NC值關係 68
5.2 主動參數和工件原點量測 69
5.3 線上量測步驟 81
5.4 線上量測結果 82
第六章 刮削實驗 83
6.1 刮齒刀與內齒輪的參數 83
6.2 刮削內齒輪的NC數值函數 84
6.3 NC程式碼之表頭與表尾 85
6.4 準備的路徑規劃與模擬 87
6.5 刮削的路徑規劃與模擬 90
6.6 M90模式與刮削結果 93
6.7 G81.4模式與刮削結果 97
第七章 結論與未來展望 106
7.1 結論 106
7.2 未來展望 107
參考文獻 110
附錄一 以G81.4在f=10(mm/min)切削代木之量測結果 115
附錄二 以G81.4在f=20(mm/min)切削代木之量測結果 117
附錄三 以G81.4在f=10(mm/min)切削塑鋼之量測結果 119
附錄四 以G81.4在f=20(mm/min)切削塑鋼之量測結果 121
附錄五 以G81.4在f=5(mm/min)切削鋁合金之量測結果 123
[1]KHK小原齒輪工業(株),齒輪技術資料。
[2]中國齒輪手冊編委會,齒輪手冊,機械工業出版社出版,中華民國八十九年。
[3]莊曄,“齒輪鉋齒加工參數研究,碩士論文,國立中正大學機械工程學系,中華民國九十三年。
[4]Green, R. N. and Mabie, H. H., “Determination of Static Tooth Stress in Nonstandard Spur Gears Cut by Pinion Cutter, Mech. Mach. Theory, Vol. 15, pp. 507-514, 1980.
[5]Green, R. N. and Mabie, H. H., “Determination of Pinion Cutter Offsets Required to Produce Nonstandard Spur Gears with Teeth of Equal Strength, Mech. Mach. Theory, Vol. 15, pp. 507-514, 1980.
[6]Huston, R. L., Mavriplis, D., and Oswald F. B., “Computer Aided Design of Spur Gear Teeth, 5th ASME International Power Transmission and Gearing Conference, pp. 539-545, 1989.
[7]Tsay, C. B., Liu, W. Y., and Chen, Y. C., “Spur Gear Generation by Shaper Cutters, Journal of Materials Processing Technology, Vol. 104, pp. 271-279, 2000.
[8]Stephen, P. Radzevich, Gear Cutting Tool: Fundamentals of Design and Computation, Taylor & Francis, 2010.
[9]Litvin, F. L., Gear Geometry and Applied Theory, Prentice-Hall, New, 1994.
[10]王秩信,“用齒輪滾刀代替專用滾刀加工蝸輪,機械工業雜誌。四川省機械工業局編,齒輪刀具設計理論基礎,機械工業出版社,中華民國七十一年。
[11]Pittler von,W.,Verfahren zum Schneiden von Zahnradern mittels eines zahnrad-artigen, an den Stirnflachen der Zahne mit Schneidkanten versehen-en Schneidwerkzeuges, Patent Application, Germany, March, 1910.
[12]Kreschel, J., Gleason power skiving: technology and basics, Gleason Company Publication, Ludwigsburg, Germany, 2012.
[13]Pittler von, W., Method for internal gear skiving, German, Patent No.243514 Klasse 49 Gruppe 51, 1910.
[14]Jin, J., The principle of gear turning and experimental results, Xi’an Jiaotong University, 2 69-97, 1962.
[15]Kojima, M., Gear skiving of involute internal spur gear (part 1: on the tooth profile). Bull JSME 17(106):511–518, 1974.
[16]Kojima, M., On the clearance angles of skiving cutter (part 2: helical type cutter for internal spur gear skiving). Bulle JSME 17(105):401–408, 1974.
[17]Stadtfeld, H.J., Power skiving of cylindrical gears on different machine platforms, Gear Technology, 31 (1) 52-62, 2014.
[18]Kobialka, C., Contemporary gear pro-machining solutions. AGMA Tech Pap, 12FTM11, 2012.
[19]Lao, Q.C., Liu B., Summary of Skiving Tool, Eng 48(1):7–9, 2014.
[20]http://www.gleason.com/products/3571/3565/300-400-600ps
[21]Spath, D. and Huhsam, A., Skiving for high-performance machining of periodic structures, Annals of the CIRP, 51 (1), 2002.
[22]Volker, S. and Chirsttoph, K., Hermann, A., 3D-FEM modeling of gear skiving to investigate and chip formation mechanisms. Adv Mater Res 223:46–55, 2011.
[23]Fleischer J., Bechle, A. and Kuhlewein, C., Process development of skiving-a highly productive gearing process, CIRP January Meeting, Presentation STC-C, Paris, 2006.
[24]Fleischer J., Bechle, A. and Kuhlewein, C., High performance gearing by skiving, CIRP 2nd International Conference on High Performance Cutting (HPC), June 12th -13th, University of British Columbia, Vancouver, Canada , 2006.
[25]Hartmut, M. and Olaf, V., Robust method for skiving and corresponding apparatus comprising a skiving tool, US, Patent, 20120328384A, 2012.
[26]Hartmut, M. and Olaf, V., Semi-completing skiving method and device having corresponding skiving tool for executing a semi-completing skiving method, US, Patent, 20130071197A1, 2013.
[27]Chen, X.C., Li J. and Zhang H. Y., Slicing technology for cylindrical gears, Chinese J. of Mechanical Engineering, 47(19) 193-198, 2011.
[28]Chen, X.C., Li J. and Lou B. C., A study on the design of error-free spur slice cutter, The International J. of Advanced Manufacturing Technology, 68,727-738, 2013.
[29]Chen, X.C., Li J. and Lou, B.C., Effect of the cutter parameters and machining parameters on the interference in gear slicing, Chinese J. of Mechanical Engineering, 26 (6) 1118-1126, 2013.
[30]Chen, X.C., A study on the grinding of the major flank face of error-free spur slice cutter, The International J. of Advanced Manufacturing Technology, 2, 2014.
[31]http://www.klingelnberg.com/en/en/hot-topics/power-skiving.html
[32]Tsai, C.Y., Mathematical model for design and analysis of power skiving tool for involute gear cutting, Mechanism And Machine Theory 101,195-208, 2016.
[33]Spath, D., Huhsam, A.,Skiving for high-performance machining of periodic structures, CIRP Ann.Manuf.Technol.51, 91-94, 2002.
[34]Guo, E., Hong, R., Hung, X. and Fang, C., Research on the design of skiving tool for machining involute gears, Journal of Mechanical Science and Technology 28(12) 5107~5115, 2014.
[35]Marciniak, K., Influence of surface shape on admissible tool positions in 5-axis face million, Computer Aided Design Vol.19, No.5 p233-236, Jun 1987.
[36]Kim, K. and Biegel J.E., Path generation method for sculptured surface manufacture, Computers & Industrial Engineering Vol.14, No.2, p95-101, 1988.
[37]Yong, S.S. and Lee, K., NC milling tool path generation for arbitrary pockets defined by sculptured surfaces, Computers & Industrial Engineering Vol.22, No.5 p273-284, Jun 1990.
[38]Zhu, C., Tool-path generation in manufacturing sculptured surfaces with a cylindrical end-milling cutter, Computers & Industrial Engineering Vol.17, No.4 p385-389, Dec 1991.
[39]Lee, W.J. and Hong, Y.S., Analysis of NC tool path Generation methods for the Machining of sculptures surfaces, Proceedings of the 6th International Pacific Conference on Automotive Proc 6 Int Pac Conf Eng. Publ by Korea Soc of Automative Engineers, Inc, 1638-3, Socho-dong Seoul Korea. P1381-1397, 1991.
[40]Ruegg, A. and Gygax, P., Generalized kinematics model for three-to five-axis milling machines and their implementation in a CNC,CIRP Annals Vol.41,No.1 p547-550,1992.
[41]Takeuchi, Y. and Watanabe, T., Generation of 5-axis control collision-free tool path and post-processing for NC data, CIRP Annals Vol.41, No.1 p539-542, 1992.
[42]Jensen, C.G., Analysis and Synthesis of Multi-axis Sculptured Surface Machining, Ph.D. Dissertation, Purdue University, 1993.
[43]Kruth, J.P. and Klewais, P., Optimization and Dynamic Adaptation of the Cutter Inclination During Five-Axis Milling of Sculptured Surfaces, Annals of the CIRP,Vol.43,pp.43-448,1994.
[44]Schulz, H., High-Speed Milling of Dies and Moulds-Cutting Condition Technology, Annals of the CIRP, Vol.44, pp.35-38, 1995.
[45]Pi, J., Automatic Tool Selection and Tool Path Generation for Five-axis Surface Machining, Ph.D. Dissertation, Brigham Young University,USA,April,1996.
[46]Ravani, B. and Chen, Y.J., Computer-Aided Design and Machining of Composite Ruled Surface, ASME Journal of Mechanism, Transmissions, and Automation in Design,Vol.108,pp.217-223,1986.
[47]Loney, G.C. and Ozsoy, T.M., NC Machining of Free Form Surface, Computer-Aided Design,Vol.19,No.2,pp.85-90,1987.
[48]Viker, G.W. and Quan, K.W., Ball-Mills Versus End-Mills for Curved Surface Machining, ASME Journal of Engineering for Industry,Vol.111,pp.22-26,1989.
[49]Lin, R.S. and Koren, Y., Real-time Interpolator for 5-axis Surface Machining, The Third International Conference on Automation Technology,Vol.1,pp.107-113,1994.
[50]Broomhead, P. and Edkins, M., Generating NC data at the Machine Tool for the Manufacture of Free-form Surfaces, International Journal of Production Research, Vol.24, No.1, pp.1-14, 1986.
[51]Suresh, K. and Yang, D.C.H., Constant Scallop-height Machining of Free-form Surfaces, ASME Journal of Engineering for Industry, Vol.116, pp.253-259, 1994.
[52]Huang, Y. and Oliver, J.H., Non-Constant Parameter NC Tool Path Generation on Sculptured Surfaces, International Journal of Advanced Manufacturing Technology, pp.281-290, 1994.
[53]Marshall, S. and Griffiths, J.G., A New Cutter-path Topology for Milling Machines, Computer-Aided Design, Vol.26, No.3, pp.204-214, 1994.
[54]Koren, Y. and Lin, R.S., Efficient Tool-Path Planning for Machining Free-Form Surfaces, ASME Journal of Engineering for Industry, pp.20-28, 1996.
[55]Stute, G. and Damsohn, H., Special Problems in Post-processing of Multi-axis Milling Machines, Proceedings of the Secone IFIP/IFAC International Conference on Programming Languages for Machine Tools, PROLOMAT 73,pp.737-746,1973.
[56]Litvin, F.L. and Gutman, Y., Methods of Synthesis and Analysis for Hypoid Gear-Drives of “Formate and “Helixform Part 1. Calculations for Machine Settings for Member Gear Manufacture of the Formate and Helixform Hypoid Gears, ASME Transactions, Journal of Mechanical Design, Vol.103, No.1, p83-87, 1981.
[57]Litvin, F.L. and Gutman, Y., Methods of Synthesis and Analysis for Hypoid Gear-Drives of “Formate and “Helixform Part 2. Machine Settings Calculations for the pinions of Formate and Helixform Hypoid Gears, ASME Transactions, Journal of Mechanical Design, Vol.103, No.1, p88-101, 1981.
[58]Litvin, F.L. and Gutman, Y., Methods of Synthesis and Analysis for Hypoid Gear-Drives of “Formate and “Helixform Part 3.Analysis and Optimal Synthesis Methods for Mismatch Gearing and its Application for Hypoid Gears of “Formate and “Helixform, ASME Transactions, Journal of Mechanical Design Vol.103, No.1, p102-113, 1981.
[59]Vickers, G.W., Bedi S. and Haw R., The Definition and Manufacture of Compound Curvature Surfaces Using G-surf, Computers inIndustry,Vol.6, No.3,pp.173-183,1985.
[60]Bedi, S. and G.W. Vickers, Postprocessor for Numerically Controlled Machine Tools, Computers in Industry, Vol.9,No.1,pp.3-18,1987.
[61]Toenshoff, H.K. and Hernades-Camacho J., Die Manufacturing by 5 and 3-axis Milling, Journal of Mechanical Working Technology, Vol.20,pp.105-109,1989.
[62]Suh. S.H. and Lee, K. S. Lee, A Prototype CAM System for four-axis NC machining of rotational-free-surface, J. of Manufacturing System Vol.10,p322-331,1991.
[63]Takeuchi, Y. and Watanable, T., Generation of 5-axis Control Collision-Free Tool Path and Post-processing for NC data, Annals of the CIRP, Vol.41, No.1, pp.539-542, 1992.
[64]Lin, P.D. and Chu, M.B., Machine Tool Settings for Manufacturing of Cams with flat-face Followers, International Journal of Machine Tools & Manufacture.Vol.34, No.8, pp1119-1131, 1994.
[65]李銘發,“滾齒凸輪在CNC五軸工具機上之切削與線上量測,碩士論文,國立成功大學機械工程學系,中華民國八十三年。
[66]Nagasaka, M. and Takeuchi Y., Generalized Post-processor for 5-axis Control Machining Based Shape Function, Journal of the Japan Society for Precision Engineering, Vol.62,No.11,pp.1607-1611,1996.
[67]吳孟霖,“五軸加工後處理程式之建構與應用 ,國立臺北科技大學機電學院製造科技研究所,中華民國九十六年。
[68]曾乾生,“薄刃鑽頭之刀具路徑與加工,博士論文,國立成功大學機械工程學系,中華民國九十七年。
[69]http://www.dmgmori.com/webspecial/journal_2014_1/cn-CN/ntx1000.htm
[70]Denavit J., Hartenberg R. S., A Kinematic Notation for Lower Pair Mechanisms Based on Matrices, ASME, J. of Appl. Mech., Vol.77, pp.215-221,1995.
[71]http://www.microingranaggi.it/2012/12/evolventimetro-klingelnberg-p26/
[72]http://info.taiwantrade.com/CH/productdetail/918348
[73]http://www.gearsolutions.com/news/detail/7013/gleason-expands-coating-facility
[74]陳政雄,“智能化工具機技術,機械月刊第三十四卷第三期,中華民國九十七年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top