(3.238.130.97) 您好!臺灣時間:2021/05/15 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃國豐
研究生(外文):Guo-FengHuang
論文名稱:拓樸最佳化設計方法於撓性機構設計之研究
論文名稱(外文):Topology Optimization Methods for Design of Compliant Mechanisms
指導教授:劉至行
指導教授(外文):Chih-Hsing Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:77
中文關鍵詞:拓樸最佳化撓性機構夾爪
外文關鍵詞:Topology optimizationcompliant mechanismgripper.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於撓性機構具有高精度低成本的特點,因此逐漸廣泛的被應用。為了能進行新型撓性機構的設計,本研究提出兩個可以應用於撓性機構設計的拓樸最佳化方法,等體積演進式拓樸最佳化方法(Evolutionary Structural Optimization with Constant Volume,ESOCV),以及反向型雙向演進式拓樸最佳化方法(Reversed Bi-directional Evolutionary Structural Optimization,RBESO)。ESOCV方法之特點為起始體積與目標體積相等,且運算過程會一直維持於目標體及直到收斂。RBESO方法令設計區間的元素初始密度為極小值,且指定一微小變化量使元素密度每次運算的變化為此微小值。設計區間的體積會依照給定的增加率增加至目標體積,並維持於目標體積直到數值運算收斂。
本文以ESOCV方法以及RBESO方法各進行兩個應變能最小化結構設計與兩個撓性機構輸出端位移最大化設計的範例證明方法之可行性,此兩種方法進行以上設計範例皆能得到與其他方法一樣的結果。兩方法最大的差異為運算時間,經過比較應用ESOCV方法於撓性機構輸出端位移最大化設計可以減少約12%~16%的運算時間,而在應變能最小化設計的計算時間,RBESO方法相較於ESOCV則增加約17%~40%。此兩種方法皆是以改變設計變數初始值來增加收斂速度,而此兩種方法與傳統雙向演進式拓樸最佳化方法比較下,運算速率皆有改善。
本研究亦利用RBESO方法設計自適性撓性夾爪,其自適性使夾爪能利用本身的撓性隨著夾取物體的外型變化而改變,使得單一尺寸設計的系統具備夾取不同外型物體之能力。此夾爪之設計結果經由動態模擬與實驗驗證,結果顯示,夾爪能順應凹、凸兩種不同形狀的物體,且與Petković等人的設計相比,本研究所設計之夾爪幾何利益高約18%。綜合以上所述,本研究所提之RBESO方法成功應用於撓性機構的設計,且此方法於撓性機構設計上具有提高效率的優點。

This research presents two new topology optimization methods for design of compliant mechanisms, Evolutionary Structural Optimization with Constant Volume (ESOCV) and Reversed Bi-directional Evolutionary Structural Optimization (RBESO) methods. Unlike traditional approaches, a multi-level pseudo-density scheme is proposed in this study. The pseudo-density is the design variable in the optimization problem which can be varied (increased or decreased) from a very small value to one with a small increment. In the ESOCV method, one special characteristic of this method is that the volume fraction, which is defined as the calculated volume divided by the full volume, remains the same value throughout the optimization process. In the RBESO method, the pseudo density of each element is initially with a very small value; the calculated volume is linearly increased until the volume fraction constraint is reached, then the calculated volume remains constant until the numerical computation is converged. Four analysis cases are provided as the benchmark examples in this study. The objective functions include the strain energy minimization and output displacement maximization. The results agree well with previous studies.
The proposed RBESO method is used to design an adaptive compliant gripper (ACG) for handling objects with large size and shape variations. Comparing to traditional grippers with rigid links and joints, as well as the general complaint grippers, the ACG has better flexibility to adapt various objects with different sizes and shapes. The dynamic performance and contact behavior of the ACG is analyzed by the nonlinear finite element analysis. The optimal design of the ACG is prototyped by using rubber material. The experimental test shows the results agree well with the numerical model. The geometric advantage of the ACG is better than the current designs. The outcomes of this study provide numerical methods for design and analysis of compliant mechanisms with large deformation and contact nonlinearity, as well as to develop an innovative ACG for industrial automation.
Keywords: Topology optimization, compliant mechanism, gripper.

目錄
摘要 i
ABSTRACT ii
致謝 xii
目錄 xiii
表目錄 xvi
圖目錄 xvii
符號說明 xxi
第一章 緒論 1
1-1 文獻回顧 2
1-2 研究目標 5
1-3 本文架構 6
第二章 拓樸最佳化方法介紹 7
2-1 改良型單向演進式拓樸最佳化方法(MESO) 9
2-1-1 MESO方法運作流程 10
2-2 等體積演進式拓樸最佳化方法(ESOCV) 11
2-2-1 ESOCV方法更新元素密度之步驟 11
2-2-2 ESOCV方法之運作步驟 13
2-3 反向型雙向演進式拓樸最佳化方法(RBESO) 14
2-3-1 RBESO方法更新元素密度之步驟 15
2-3-2 RBESO方法的運算步驟 17
第三章 設計目標介紹 18
3-1 全應力分佈結構最佳化 18
3-2 結構應變能最小化設計 18
3-3 撓性機構輸出位移最大化設計 20
第四章 範例與討論 24
4-1 全應力分佈結構最佳化範例 24
4-1-1 MESO方法施作範例一 26
4-1-2 MESO方法施作範例二 28
4-2 結構應變能最小化範例 31
4-2-1 ESOCV方法施作範例一 31
4-2-2 ESOCV方法施作範例二 33
4-2-3 RBESO方法施作範例一 34
4-2-4 RBESO方法施作範例二 36
4-2-5 比較與討論 37
4-3 撓性機構輸出位移最大化範例 39
4-3-1 ESOCV方法施作範例一 40
4-3-2 ESOCV方法施作範例二 42
4-3-3 RBESO方法施作範例一 43
4-3-4 RBESO方法施作範例二 45
4-3-5 外加彈簧的影響 46
4-3-6 比較與討論 49
第五章 自適性撓性夾爪設計分析與實驗 52
5-1 夾爪邊界條件設計介紹以及設計成果 52
5-1-1 指節一設計介紹 54
5-1-2 指節二設計介紹 56
5-1-3 夾爪組合 57
5-2 夾爪之動態分析 58
5-2-1 夾爪A之動態模擬 60
5-2-2 夾爪B之動態模擬 63
5-2-3 比較 66
5-3 實作驗證 69
第六章 結論與建議 73
6-1 結論 73
6-2 建議 74
參考文獻 76
參考文獻
[1]L. L. Howell, S. P. Magleby, and B. M. Olsen, Handbook of compliant mechanisms: John Wiley & Sons, 2013.
[2]S. Kota, J. Joo, Z. Li, S. M. Rodgers, and J. Sniegowski, Design of compliant mechanisms: applications to MEMS, Analog integrated circuits and signal processing, vol. 29, pp. 7-15, 2001.
[3]S. Kota, K. J. Lu, Z. Kreiner, B. Trease, J. Arenas, and J. Geiger, Design and application of compliant mechanisms for surgical tools, Journal of Biomechanical Engineering, vol. 127, pp. 981-989, 2005.
[4]S. Shuib, M. I. Z. Ridzwan, and A. H. Kadarman, Methodology of compliant mechanisms and its current developments in applications: a review, American Journal of Applied Sciences, vol. 4, pp. 160-167, 2007.
[5]Z. Luo, L. Tong, M. Y. Wang, and S. Wang, Shape and topology optimization of compliant mechanisms using a parameterization level set method, Journal of Computational Physics, vol. 227, pp. 680-705, 2007.
[6]M. P. Bendsøe and O. Sigmund, Topology optimization: theory, methods and applications., Second ed.: Springer, Berlin, 2004.
[7]M. Zhou and G. I. N. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Computer Methods in Applied Mechanics and Engineering, vol. 89, pp. 309-336, 1991.
[8]Y. M. Xie and G. P. Steven, A simple evolutionary procedure for structural optimization, Computers & Structures, vol. 49, pp. 885-896, 1993.
[9]X. Huang and Y. M. Xie, Evolutionary topology optimization of continuum structures: methods and applications: John Wiley & Sons, 2010.
[10]M. P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer methods in applied mechanics and engineering, vol. 71, pp. 197-224, 1988.
[11]O. Sigmund, A 99 line topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, vol. 21, pp. 120-127, 2001.
[12]Y.-M. Xie and G. P. Steven, Evolutionary structural optimization: Springer, 1997.
[13]O. Sigmund, On the design of compliant mechanisms using topology optimization*, Mechanics of Structures and Machines, vol. 25, pp. 493-524, 1997.
[14]O. Wright and W. Wright, Flying-machine, U.S. Patent Patent, 1906.
[15]S. Kota, J. A. Hetrick, R. Osborn, D. Paul, E. Pendleton, P. Flick, et al., Design and application of compliant mechanisms for morphing aircraft structures, 2003, pp. 24-33.
[16]D. Petković, N. D. Pavlović, S. Shamshirband, and N. Badrul Anuar, Development of a new type of passively adaptive compliant gripper, Industrial Robot: An International Journal, vol. 40, pp. 610-623, 2013.
[17]L. L. Howell and A. Midha, A method for the design of compliant mechanisms with small-length flexural pivots, Journal of Mechanical Design, vol. 116, pp. 280-290, 1994.
[18]R. Ansola, E. Veguería, J. Canales, and J. A. Tárrago, A simple evolutionary topology optimization procedure for compliant mechanism design, Finite Elements in Analysis and Design, vol. 44, pp. 53-62, 2007.
[19]O. Querin, G. Steven, and Y. Xie, Evolutionary structural optimisation using an additive algorithm, Finite Elements in Analysis and Design, vol. 34, pp. 291-308, 2000.
[20]Y. Li, X. D. Huang, Y. M. Xie, and S. W. Zhou, Bi-directional evolutionary structural optimization for design of compliant mechanisms, Key Engineering Materials, vol. 535-536, pp. 373-376, 2013.
[21]Y. Li, Topology optimization of compliant mechanisms based on the BESO method, Ph.D. Dissertation, Environmental and Chemical Engineering, RMIT University, 2014.
[22]X. Huang and Y. M. Xie, Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elements in Analysis and Design, vol. 43, pp. 1039-1049, 2007.
[23]E. Hinton and J. Sienz, Fully stressed topological design of structures using an evolutionary procedure, Engineering computations, vol. 12, pp. 229-244, 1995.
[24]M. Wang, Mechanical and geometric advantages in compliant mechanism optimization, Frontiers of Mechanical Engineering in China, vol. 4, pp. 229-241, 2009.
[25]AZoM.com. Available: http://www.azom.com/properties.aspx?ArticleID=920


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top