跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周家菁
研究生(外文):Chia-ChinChou
論文名稱:以氧化石墨烯/硫/二氧化鈦複合光觸媒在可見光下處理室內空氣污染物甲苯
論文名稱(外文):Photocatalytic abatement of indoor air pollutant toluene by graphene oxide/S/TiO2 composites under visible light
指導教授:朱信朱信引用關係
指導教授(外文):Hsin Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:130
中文關鍵詞:二氧化鈦氧化石墨烯光催化可見光室內空氣甲苯
外文關鍵詞:TiO2graphene oxidephotocatalysisvisible lightindoor airtoluene
相關次數:
  • 被引用被引用:1
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
隨著人類生活型態的改變,人們每天約有80%的時間待在室內。因此,室內空氣品質的重要性越來越高。室內空氣污染物主要來自於揮發性有機物,而在這之中,甲苯是最具代表性之一。它的排放源可能來自油漆塗料、家具、消毒劑等。此外,甲苯具有高毒性、致癌性及可長時間存在於空氣之中。因此,發展能夠去除室內空氣中甲苯的技術是不可或缺的。
空氣污染的控制技術有很多種。其中一種是吸附,利用吸附劑吸附VOCs降低空氣中VOCs的濃度,然而這個方法的缺點是會產生二次污染物以及被吸附再脫附的可能。另外,可以利用生物技術去除空氣中的VOCs,但是要應用在一般室內環境,維持系統正常運作是一大難題。綜觀各種技術,光觸媒氧化法是新穎且綠色的VOCs去除技術,它能夠將之降解為二氧化碳與水。
二氧化鈦是光觸媒中應用最廣泛的,因為它的成本不高、穩定性佳、具化學惰性且有優異的光催化能力。然而它的缺點是能隙過高以至於在一般室內大都利用可見光照明的環境下,無法發揮其光催化的能力。因此,透過改質二氧化鈦使其能應用可見光進行良好的光催化反應是無可避免的。
在本研究裡,會透過摻雜硫與氧化石墨烯於二氧化鈦之中,進而促使二氧化鈦能夠吸收可見光進行光催化反應。根據紫外-可見光分析光譜的結果顯示摻雜硫與氧化石墨烯確實能夠增進二氧化鈦對可見光的吸收。從XRD、SEM、TEM的分析結果顯示摻雜後的二氧化鈦晶相以銳鈦礦為主,且其晶粒大小約為10 nm,小於純二氧化鈦。由XPS圖譜結果表示鈦以Ti4+為主,硫以 S6+為主,而氧則是以O2-的形式存在,推測其中有Ti-O-S鍵結形成。另外在C1s XPS結果表示在光觸媒製備過程中,氧化石墨烯上的含氧基團有減少的趨勢,代表其有被還原的現象。在不同光觸媒的活性試驗(甲苯進流濃度 2 ppm、60%水氣濃度、35℃、可見光光源)中,以 5wt%GO-S0.05TiO2具有最佳的光催化活性,而添加過多的氧化石墨烯會造成光遮蔽效應。於不同操作參數試驗中,提升水氣濃度導致轉換率下降可能是因為水氣與甲苯產生競爭吸附;提高操作溫度可以使轉換率增加是因為增加了分子的碰撞機會以及吸附於表面的水減少;增加甲苯的進流濃度則是造成轉換率下降。

With the life style change, people spend almost 80% time in indoor environment. Thus, the indoor air quality has received much attention. The indoor air pollutants are mainly volatile organic compounds (VOCs). Among them, toluene is one of the most predominant VOCs. It can be found from the paint, furniture, disinfectant and so on. Moreover, toluene has high toxicity, carcinogenicity and long persistence in indoor environment. Thus, it is necessary to find a technique to remove toluene from indoor air.
There are some traditional methods to eliminate VOCs. Adsorption applies adsorbent to capture VOCs. Its drawbacks are the formation of secondary pollutant and desorption. Biological technology can degrade VOCs by microorganism, but it is hard to maintain. On the contrary, photocatalytic oxidation process is a promising and green technology for VOCs removal and it can degrade VOCs into CO2 and H2O.
TiO2 is a widely used photocatalyst because of its low-cost, stability, and chemical inertness with strong oxidation power. However, its band gap is rather high resulted in less photocatalytic activity in indoors where commonly use visible light. As a result, it is inevitable to modify TiO2 to facilitate visible light absorption.
In this study, sulfur and graphene oxide were doped into TiO2. They were expected to enhance the utilization of visible light for TiO2. According to UV-visible spectrometry, the doping of sulfur and graphene oxide into TiO2 can obviously increase the visible light adsorption. Through XRD, SEM and TEM analysis, the crystallite phase of TiO2 is anatase after calcination at 400℃ under nitrogen flow; the crystallite sizes of graphene oxide/S/TiO2 are around 10 nm which are smaller than that of bare TiO2. The XPS spectra prove the presence of Ti4+, S6+ and O2-, and forming Ti-O-S. From the C1s XPS spectra, it can be seen that the graphene oxide is reduced because of the decrease of oxygen-containing groups during the preparation of photocatalysts. Besides, the result of the activity test of photocatalysts shows that 5wt%GO-S0.05TiO2 has the best photocatalytic performance. More graphene oxide addition could cause the shield of the light. In the various parameters test, the conversion of toluene deceases when the relative humidity increases. It is due to competitive adsorption between adsorbed water and toluene. The conversion of toluene increases with the increasing temperature. It suggests that higher temperature results in an increasing collision frequency and the less quantity of adsorbed water. The conversion of toluene decreases with an increase of inlet toluene concentration.

摘要 I
Abstract III
誌謝 V
Content VII
The list of tables IX
The list of figures X
Chapter 1 Introduction 1
1-1 Motivations 1
1-2 Objectives 3
Chapter 2 Literatures review 5
2-1 The introduction of indoor air pollutants 5
2-2 The property of toluene and its disposals 7
2-2-1 The property of toluene 7
2-2-2 The control technologies of toluene 11
2-3 Photocatalysis 12
2-3-1 Photocatalyst 12
2-3-2 The principle of photocatalysis 12
2-3-3 Band gap 14
2-4 The modification of TiO2 16
2-4-1 Doping TiO2 with metal atoms 16
2-4-2 Doping TiO2 with metal ions 17
2-4-3 Doped TiO2 with non-metal elements 18
2-5 Graphene and its derivation 19
2-5-1 The introduction of graphene 19
2-5-2 Synthesis of graphene 19
2-6 Photocatalyst preparation 22
2-6-1 Impregnation method 22
2-6-2 Sol-gel method 22
2-6-3 Precipitation 23
2-7 Reaction kinetics 25
2-7-1 Plug flow reactor 26
2-7-2 Differential reactor 28
2-7-3 Heterogeneous photocatalysis reaction model 29
Chapter 3 Experimental material and method 33
3-1 Chemicals and gases 33
3-2 Reactor and experimental set-up 33
3-3 Characteristics of photocatalysts 38
3-3-1 Thermogravimetric/differential thermal analysis (TG/DTA) 38
3-3-2 X-ray powder diffraction spectroscopy (XRD) 38
3-3-3 UV-visible spectrometry 39
3-3-4 Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) 39
3-3-5 Fourier transform infrared spectroscopy (FTIR) 39
3-3-6 X-ray photoelectron spectroscopy (XPS) 40
3-3-7 Brunauer–Emmett–Teller analysis (BET) 40
3-4 Experimental methods 41
3-4-1 The preparation of graphite oxide 41
3-4-2 The preparation of photocatalysts 42
3-4-3 Preparation of photocatalytst film 44
3-4-4 Calibration curve 44
3-4-5 The stability test of simulated gas system of toluene 46
Chapter 4 Results and discussion 47
4-1 Photocatalysts characterization 47
4-1-1 TGA 47
4-1-2 XRD 51
4-1-3 UV-visible spectrometry 57
4-1-4 SEM 60
4-1-5 EDS and Mapping 63
4-1-6 TEM 73
4-1-7 FTIR 77
4-1-8 XPS 80
4-1-9 BET 88
4-2 The activity test of photocatalysts 91
4-3 The parameters test of 5wt%GO-S0.05TiO2 94
4-3-1 Effect of relative humidity 94
4-3-2 Effect of temperature 97
4-3-3 Effect of inlet concentration of toluene 99
4-4 Photocatalytic reaction kinetics 101
Chapter 5 Conclusion and suggestion 115
5-1 Conclusion 115
5-2 Suggestion 118
References 119

Ang, T.P., Law, J.Y., Han, Y.-F., 2010. Preparation, characterization of sulfur-doped nanosized TiO2 and photocatalytic degradation of methylene blue under visible light. Catalysis letters 139, 77-84.
Arman, S.Y., Omidvar, H., Tabaian, S.H., Sajjadnejad, M., Fouladvand, S., Afshar, S., 2014. Evaluation of nanostructured S-doped TiO2 thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless steel. Surface and Coatings Technology 251, 162-169.
Bayati, M., Golestani-Fard, F., Moshfegh, A., Molaei, R., 2011. In situ derivation of sulfur activated TiO2 nano porous layers through pulse-micro arc oxidation technology. Materials Research Bulletin 46, 1642-1647.
Bernstein, J.A., Alexis, N., Bacchus, H., Bernstein, I.L., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A., Tarlo, S.M., 2008. The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical Immunology 121, 585-591.
Bianchi, C.L., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocellà, V., Capucci, V., 2014. Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental 146, 123-130.
Botas, C., Álvarez, P., Blanco, C., Gutiérrez, M.D., Ares, P., Zamani, R., Arbiol, J., Morante, J.R., Menéndez, R., 2012. Tailored graphene materials by chemical reduction of graphene oxides of different atomic structure. RSC Advances 2, 9643-9650.
Brinker, C.J., Scherer, G.W., 2013. Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.
Brown, S., Sim, M.R., Abramson, M.J., Gray, C.N., 1994. Concentrations of volatile organic compounds in indoor air–a review. Indoor Air 4, 123-134.
Cao, C.H., 2013. Enhanced Photocatalytic Activity of TiO2/Graphene Oxide Nanocomposites Prepared by the Sol-Gel Method. Applied Mechanics and Materials. Trans Tech Publ, pp. 176-181.
Charanpahari, A., Umare, S., Sasikala, R., 2013. Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2. Applied Surface Science 282, 408-414.
Chen, F., Yang, X., Xu, F., Wu, Q., Zhang, Y., 2009. Correlation of photocatalytic bactericidal effect and organic matter degradation of TiO2 part I: observation of phenomena. Environmental science & technology 43, 1180-1184.
Chen, W., Zhang, J.S., 2008. UV-PCO device for indoor VOCs removal: Investigation on multiple compounds effect. Build Environ 43, 246-252.
Cheng, X., Deng, X., Wang, P., Liu, H., 2015. Coupling TiO2 nanotubes photoelectrode with Pd nano-particles and reduced graphene oxide for enhanced photocatalytic decomposition of diclofenac and mechanism insights. Separation and Purification Technology 154, 51-59.
Chesalov, Y.A., Chernobay, G.B., Andrushkevich, T.V., 2013. FTIR study of the surface complexes of β-picoline, 3-pyridine-carbaldehyde and nicotinic acid on sulfated TiO2 (anatase). Journal of Molecular Catalysis A: Chemical 373, 96-107.
Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S., 2010. Synthesis of graphene and its applications: a review. Critical Reviews in Solid State and Materials Sciences 35, 52-71.
Crişan, M., Brăileanu, A., Răileanu, M., Zaharescu, M., Crişan, D., Drăgan, N., Anastasescu, M., Ianculescu, A., Niţoi, I., Marinescu, V.E., 2008. Sol–gel S-doped TiO2 materials for environmental protection. Journal of Non-Crystalline Solids 354, 705-711.
Dato, A., Lee, Z., Jeon, K.-J., Erni, R., Radmilovic, V., Richardson, T.J., Frenklach, M., 2009. Clean and highly ordered graphene synthesized in the gas phase. Chemical Communications., 6095-6097.
Demeestere, K., Dewulf, J., De Witte, B., Van Langenhove, H., 2005. Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: Parameter study and reaction pathways. Applied Catalysis B: Environmental 60, 93-106.
Deng, Q., Yang, X., Zhang, J.S., 2012. Key factor analysis of VOC sorption and its impact on indoor concentrations: The role of ventilation. Building and Environment 47, 182-187.
Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., 2007. Preparation and characterization of graphene oxide paper. Nature 448, 457-460.
Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., 2010. The chemistry of graphene oxide. Chemical Society Reviews 39, 228-240.
Ezzati, M., Kammen, D.M., 2002. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environmental health perspectives 110, 1057.
Fan, W., Lai, Q., Zhang, Q., Wang, Y., 2011. Nanocomposites of TiO2 and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution. The Journal of Physical Chemistry C 115, 10694-10701.
Fan, Z., Wang, K., Wei, T., Yan, J., Song, L., Shao, B., 2010. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48, 1686-1689.
Fernandez-Merino, M., Guardia, L., Paredes, J., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., Tascon, J., 2010. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. The Journal of Physical Chemistry C 114, 6426-6432.
Fogler, H.S., 1999. Elements of chemical reaction engineering.
Frankenburg, W.G., Komarewsky, V.I., Rideal, E.K., 1952. Advances in catalysis. Academic Press.
Fu, C., Zhao, G., Zhang, H., Li, S., 2013. Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci 8, 6269-6280.
Fu, X., Clark, L.A., Zeltner, W.A., Anderson, M.A., 1996. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. Journal of Photochemistry and Photobiology A: Chemistry 97, 181-186.
Gallego, E., Roca, F.J., Perales, J.F., Guardino, X., 2013. Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement. Building and Environment 67, 14-25.
Geim, A.K., Novoselov, K.S., 2007. The rise of graphene. Nature materials 6, 183-191.
Goyer, N., Lavoie, J., 2001. Emissions of Chemical Compounds and Bioaerosols During the Secondary Treatment of Paper Mill Effluents. AIHAJ - American Industrial Hygiene Association 62, 330-341.
Guimarães de Oliveira, A., Nascimento, J.P., de Fátima Gorgulho, H., Martelli, P.B., Furtado, C.A., Figueiredo, J.L., 2016. Electrochemical synthesis of TiO2/Graphene oxide composite films for photocatalytic applications. Journal of Alloys and Compounds 654, 514-522.
Guo, H., Lee, S.C., Li, W.M., Cao, J.J., 2003. Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmospheric Environment 37, 73-82.
Hagen, J., 2006. Industrial catalysis: a practical approach. John Wiley & Sons.
Harizanov, O., Ivanova, T., Harizanova, A., 2001. Study of sol–gel TiO2 and TiO2–MnO obtained from a peptized solution. Materials letters 49, 165-171.
He, C., Yu, Y., Zhou, C.-H., Hu, X.-F., 2002. Structure and Photocatalytic Activities of Ag/TiO2 Thin Films. Journal of Inorganic Materials 5, 019.
Hong, Q., SUN, D.-z., CHI, G.-q., 2007. Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode. Journal of Environmental Sciences 19, 1136-1140.
Hong, S.-S., Lee, M.S., Park, S.S., Lee, G.-D., 2003. Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol. Catalysis today 87, 99-105.
Hummers, W.S., Offeman, R.E., 1958. Preparation of Graphitic Oxide. Journal of the American Chemical Society 80, 1339-1339.
Hung, W.-C., Fu, S.-H., Tseng, J.-J., Chu, H., Ko, T.-H., 2007. Study on Photocatalytic Degradation of Gaseous Dichloromethane Using Pure and Iron Ion-doped TiO2 Prepared by the Sol–Gel Method. Chemosphere 66, 2142-2151.
Hussain, M., Russo, N., Saracco, G., 2011. Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chemical Engineering Journal 166, 138-149.
Jeong, H.-K., Noh, H.-J., Kim, J.-Y., Jin, M., Park, C., Lee, Y., 2008. X-ray absorption spectroscopy of graphite oxide. Europhysics Letters 82, 67004.
Jiang, G., Lin, Z., Chen, C., Zhu, L., Chang, Q., Wang, N., Wei, W., Tang, H., 2011. TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693-2701.
Katsnelson, M.I., 2007. Graphene: carbon in two dimensions. Materials today 10, 20-27.
Kisch, H., 2014. Semiconductor Photocatalysis: Principles and Applications. John Wiley & Sons.
Klauson, D., Portjanskaya, E., Budarnaja, O., Krichevskaya, M., Preis, S., 2010. The synthesis of sulphur and boron-containing titania photocatalysts and the evaluation of their photocatalytic activity. Catalysis Communications 11, 715-720.
Korologos, C.A., Nikolaki, M.D., Zerva, C.N., Philippopoulos, C.J., Poulopoulos, S.G., 2012. Photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase over TiO2-based catalysts. Journal of Photochemistry and Photobiology A: Chemistry 244, 24-31.
Korologos, C.A., Philippopoulos, C.J., Poulopoulos, S.G., 2011. The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmospheric Environment 45, 7089-7095.
Leary, R., Westwood, A., 2011. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49, 741-772.
Legrand-Buscema, C., Malibert, C., Bach, S., 2002. Elaboration and characterization of thin films of TiO2 prepared by sol–gel process. Thin Solid Films 418, 79-84.
Li, G., Wang, G., 1999. Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostructured Materials 11, 663-668.
Lin, Y.-H., Chiu, T.-C., Hsueh, H.-T., Chu, H., 2011. N-doped TiO2 photo-catalyst for the degradation of 1,2-dichloroethane under fluorescent light. Applied Surface Science 258, 1581-1586.
Lin, Y.-H., Chou, S.-H., Chu, H., 2014a. A kinetic study for the degradation of 1,2-dichloroethane by S-doped TiO2 under visible light. Journal of Nanoparticle Research 16, 1-12.
Lin, Y.-H., Hsueh, H.-T., Chang, C.-W., Chu, H., 2016. The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2: Characterization, kinetics, and reaction pathways. Applied Catalysis B: Environmental 199, 1-10.
Lin, Y.-H., Tseng, T.-K., Chu, H., 2014b. Photo-catalytic degradation of dimethyl disulfide on S and metal-ions co-doped TiO2 under visible-light irradiation. Applied Catalysis A: General 469, 221-228.
Liu, C., Zhang, L., Liu, R., Gao, Z., Yang, X., Tu, Z., Yang, F., Ye, Z., Cui, L., Xu, C., Li, Y., 2016. Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. Journal of Alloys and Compounds 656, 24-32.
Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X., Sun, D.D., 2010. Self‐Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two‐Phase Interface and Their Anti‐Recombination in Photocatalytic Applications. Advanced Functional Materials 20, 4175-4181.
Liu, S., Chen, X., 2008. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazardous Materials 152, 48-55.
Liu, S.X., Qu, Z.P., Han, X.W., Sun, C.L., 2004. A Mechanism for Enhanced Photocatalytic Activity of Silver-Loaded Titanium Dioxide. Catalysis Today 93-5, 877-884.
Liu, T.-x., Li, F.-b., Li, X.-z., 2008. TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase. Journal of Hazardous Materials 152, 347-355.
Liu, Y., Wang, H.-q., Wu, Z.-b., 2007. Characterization of metal doped-titanium dioxide and behaviors on photocatalytic oxidation of nitrogen oxides. Journal of Environmental Sciences 19, 1505-1509.
Losurdo, M., Giangregorio, M.M., Capezzuto, P., Bruno, G., 2011. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics 13, 20836-20843.
Madarász, J., Brăileanu, A., Crişan, M., Pokol, G., 2009. Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG–FTIR and TG/DTA–MS in air: part 2. Precursor from thiourea and titanium (IV)-n-butoxide. Journal of Analytical and Applied Pyrolysis 85, 549-556.
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M., 2010. Improved synthesis of graphene oxide. ACS nano 4, 4806-4814.
Mo, J., Zhang, Y., Xu, Q., Lamson, J.J., Zhao, R., 2009a. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment 43, 2229-2246.
Mo, J.H., Zhang, Y.P., Xu, Q.J., 2013. Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation. Applied Catalysis B-Environmental 132, 212-218.
Mo, J.H., Zhang, Y.P., Xu, Q.J., Yang, R., 2009b. Effect of TiO2/adsorbent hybrid photocatalysts for toluene decomposition in gas phase. J Hazard Mater 168, 276-281.
Nasir, M., Xi, Z., Xing, M., Zhang, J., Chen, F., Tian, B., Bagwasi, S., 2013. Study of Synergistic Effect of Ce- and S-Codoping on the Enhancement of Visible-Light Photocatalytic Activity of TiO2. The Journal of Physical Chemistry C 117, 9520-9528.
Nguyen-Phan, T.-D., Pham, V.H., Shin, E.W., Pham, H.-D., Kim, S., Chung, J.S., Kim, E.J., Hur, S.H., 2011. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal 170, 226-232.
Niu, Y., Xing, M., Zhang, J., Tian, B., 2013. Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol. Catalysis Today 201, 159-166.
Obee, T.N., Brown, R.T., 1995. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1, 3-butadiene. Environmental Science Technology 29, 1223-1231.
Obee, T.N., Hay, S.O., 1997. Effects of moisture and temperature on the photooxidation of ethylene on Titania. Environmental Science Technology 31, 2034-2038.
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., 2004. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General 265, 115-121.
Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., Ruoff, R.S., 2009. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano letters 9, 1593-1597.
Pastrana-Martínez, L.M., Morales-Torres, S., Likodimos, V., Figueiredo, J.L., Faria, J.L., Falaras, P., Silva, A.M.T., 2012. Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Catalysis B: Environmental 123–124, 241-256.
Patel, N., Jaiswal, R., Warang, T., Scarduelli, G., Dashora, A., Ahuja, B.L., Kothari, D.C., Miotello, A., 2014. Efficient photocatalytic degradation of organic water pollutants using V–N-codoped TiO2 thin films. Applied Catalysis B: Environmental 150–151, 74-81.
Pham, T.-D., Lee, B.-K., 2015. Novel adsorption and photocatalytic oxidation for removal of gaseous toluene by V-doped TiO2/PU under visible light. Journal of Hazardous Materials 300, 493-503.
Rengifo-Herrera, J., Pierzchała, K., Sienkiewicz, A., Forro, L., Kiwi, J., Pulgarin, C., 2009. Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1 O 2) under visible light. Applied Catalysis B: Environmental 88, 398-406.
Rezaei, F., Moussavi, G., Bakhtiari, A.R., Yamini, Y., 2016. Toluene removal from waste air stream by the catalytic ozonation process with MgO/GAC composite as catalyst. Journal of Hazardous Materials 306, 348-358.
Rong, X., Qiu, F., Zhang, C., Fu, L., Wang, Y., Yang, D., 2015. Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation. Ceramics International 41, 2502-2511.
Shang, Q., Tan, X., Yu, T., Zhang, Z., Zou, Y., Wang, S., 2015. Efficient gaseous toluene photoconversion on graphene–titanium dioxide nanocomposites with dominate exposed {001} facets. Journal of colloid and interface science 455, 134-144.
Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C., Ye, M., 2009. Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets. Chemistry of Materials 21, 3514-3520.
Sher Shah, M.S.A., Park, A.R., Zhang, K., Park, J.H., Yoo, P.J., 2012. Green Synthesis of Biphasic TiO2–Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces 4, 3893-3901.
Sivakumar, S., Pillai, P.K., Mukundan, P., Warrier, K., 2002. Sol–gel synthesis of nanosized anatase from titanyl sulfate. Materials letters 57, 330-335.
Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J.-M., 2009. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental 86, 159-165.
Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S., 2006. Graphene-based composite materials. nature 442, 282-286.
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558-1565.
Stengl, V., Bakardjieva, S., Grygar, T.M., Bludska, J., Kormunda, M., 2013. TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chemistry Central Journal 7.
Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., Bieloshapka, I., 2014. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena 195, 145-154.
Storch, H.H., 1935. Activity and Activation Energy in Heterogeneous Catalysis of Gas Reactions1. Journal of the American Chemical Society 57, 1395-1398.
Tang, F., Yang, X.D., 2012. A deactivation kinetic model for predicting the performance of photocatalytic degradation of indoor toluene, o-xylene, and benzene. Building and Environment 56, 329-334.
Trapalis, A., Todorova, N., Giannakopoulou, T., Boukos, N., Speliotis, T., Dimotikali, D., Yu, J., 2016. TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide. Applied Catalysis B: Environmental 180, 637-647.
Twigg, M.V., Twigg, M., 1989. Catalyst handbook. CSIRO.
Umebayashi, T., Yamaki, T., Itoh, H., Asai, K., 2002. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids 63, 1909-1920.
Vincent, G., Marquaire, P.M., Zahraa, O., 2009. Photocatalytic degradation of gaseous 1-propanol using an annular reactor: Kinetic modelling and pathways. Journal of Hazardous Materials 161, 1173-1181.
Wang, G., Wang, B., Park, J., Yang, J., Shen, X., Yao, J., 2009. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 47, 68-72.
Wang, S., Ang, H.M., Tade, M.O., 2007. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International 33, 694-705.
Wang, W., Yu, J., Xiang, Q., Cheng, B., 2012a. Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Applied Catalysis B: Environmental 119–120, 109-116.
Wang, Y.-X., Huang, L., Sun, L.-C., Xie, S.-Y., Xu, G.-L., Chen, S.-R., Xu, Y.-F., Li, J.-T., Chou, S.-L., Dou, S.-X., 2012b. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. Journal of Materials Chemistry 22, 4744-4750.
Wang, Z., Huang, B., Dai, Y., Liu, Y., Zhang, X., Qin, X., Wang, J., Zheng, Z., Cheng, H., 2012c. Crystal facets controlled synthesis of graphene@TiO 2 nanocomposites by a one-pot hydrothermal process. CrystEngComm 14, 1687-1692.
Wen-Fu, F., van Eldik, R., 1996. Photo-substitution reactions of Cr(CO)4(1,10-phenanthroline). Mechanistic information from entering nucleophile, irradiation wavelength and pressure dependences. Inorganica Chimica Acta 251, 341-346.
Wu, J.F., Hung, C.H., Yuan, C.S., 2005. Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor. Journal of Photochemistry and Photobiology A 170, 299-306.
Xu, J.-H., Li, J., Dai, W.-L., Cao, Y., Li, H., Fan, K., 2008. Simple fabrication of twist-like helix N, S-codoped titania photocatalyst with visible-light response. Applied Catalysis B: Environmental 79, 72-80.
Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice Jr, C.A., Ruoff, R.S., 2009. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145-152.
Yu, B., Wang, X., Qian, X., Xing, W., Yang, H., Ma, L., Lin, Y., Jiang, S., Song, L., Hu, Y., Lo, S., 2014. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Advances 4, 31782-31794.
Yu, C., Cai, D., Yang, K., Jimmy, C.Y., Zhou, Y., Fan, C., 2010. Sol–gel derived S, I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. Journal of Physics and Chemistry of Solids 71, 1337-1343.
Yu, Q.L., Brouwers, H.J.H., 2009. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study. Applied Catalysis B-Environment 92, 454-461.
Yurish, S., 2012. Modern Sensors, Transducers and Sensor Networks. Lulu. com.
Zhang, F., Wang, M., Zhu, X., Hong, B., Wang, W., Qi, Z., Xie, W., Ding, J., Bao, J., Sun, S., 2015. Effect of surface modification with H2S and NH3 on TiO2 for adsorption and photocatalytic degradation of gaseous toluene. Applied Catalysis B: Environmental 170, 215-224.
Zhang, G., Zhang, Y.C., Nadagouda, M., Han, C., O'Shea, K., El-Sheikh, S.M., Ismail, A.A., Dionysiou, D.D., 2014. Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR. Applied Catalysis B: Environmental 144, 614-621.
Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S., 2010. Reduction of graphene oxide via L-ascorbic acid. Chemical Communications 46, 1112-1114.
Zhang, P.Y., Liu, J., 2004. Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study. Journal of Photochemistry and Photobiology A 167, 87-94.
Zhang, Q., He, Y., Chen, X., Hu, D., Li, L., Yin, T., Ji, L., 2011. Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chinese Science Bulletin 56, 331-339.
Zhang, W., Liu, W., Wang, C., 2002. Tribological behavior of sol–gel TiO2 films on glass. Wear 253, 377-384.
Zhang, X., Sun, Y., Cui, X., Jiang, Z., 2012. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy 37, 811-815.
Zhang, Y., Shen, Y., Gu, F., Wu, M., Xie, Y., Zhang, J., 2009. Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Applied Surface Science 256, 85-89.
Zhong, L., Haghighat, F., Blondeau, P., Kozinski, J., 2010. Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications. Building and Environment 45, 2689-2697.
Zhou, M., Yu, J., 2008. Preparation and Enhanced Daylight-Induced Photocatalytic Activity of C,N,S-Tridoped Titanium Dioxide Powders. Journal of Hazardous Materials 152, 1229-1236.
Zhu, Y., Stoller, M.D., Cai, W., Velamakanni, A., Piner, R.D., Chen, D., Ruoff, R.S., 2010. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS nano 4, 1227-1233.
Zielińska-Jurek, A., Zaleska, A., 2014. Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase. Catalysis Today 230, 104-111.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊