(3.236.214.19) 您好!臺灣時間:2021/05/07 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許鈞筌
研究生(外文):Jyun-CyuanSyu
論文名稱:利用Acetobacterium woodii固定二氧化碳產製乙酸之研究
論文名稱(外文):The study of carbon dioxide utilization and acetate production by Acetobacterium woodii
指導教授:黃良銘黃良銘引用關係
指導教授(外文):Liang-Ming Whang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:73
中文關鍵詞:乙酸化菌自營性乙酸化細胞固定化包埋氣泡管柱式反應器
外文關鍵詞:Acetogenic bacteriaBubble column reactorImmobilized cellHomoacetogenesisEntrapment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,工業的發展,形成大量消費的生活型態,而大量燃燒石化燃料以及許多工業製成使得二氧化碳大量釋出,此現象造成了溫室效應及全球氣候變遷,使冰山融化、海平面上升以及生物被強迫離開棲地。因此,發展固碳以及低碳排技術刻不容緩。在工業廢氣尤其是鋼鐵工業廢氣中,含有大量的氫氣(含大約60%)及二氧化碳,而乙酸化菌(Acetogenic bacteria)可以消耗氫氣及二氧化碳產生出乙酸。在本研究中利用乙酸菌 Acetobacterium woodii可轉換氫氣二氧化碳為乙酸的特性,作不同基質及不同葡萄糖濃度的批次研究。而由於乙酸菌生長緩慢,使用固定化法(GAC吸附及包埋方法)引入實驗及反應槽提高細胞密度以及效率。結果顯示,在有葡萄糖的存在,A. woodii的代謝有三個階段,葡萄糖轉換乳酸、乳酸降解以及乙酸穩定生成階段,然而沒有葡萄糖單純有氫氣及二氧化碳當基質的情況下,乙酸跟微生物量都不高。而微生物濃度越高乙酸生成速率越高,在批次實驗中,OD值為0.33、0.76及1.26的三個組別乙酸生成速率分別為0.0054、0.0119及0.0273 mmole/day。固定化批次的乙酸生成速率來的比懸浮態的來的高,而包埋方式來的比活性碳高。使用包埋方式不需要額外的葡萄糖投入。使用活性碳的氣泡管柱式反應器(bubble column reactor)越高的進氣量,可消耗的的氣體量越高,然而乙酸生成速率在各進氣量下差不多(1.3及3.5 mmole/day分別在不同試層中)。而使用包埋顆粒當載體的反應器中,越高進氣量並不會得到越高的氣體消耗量,高的氣體流量反而會導致乙酸生成率下降。使用包埋當載體的反應器所得到的乙酸生成速率比使用活性碳的來的高(4.1、4.8及6.2 mmole/day)。以持續控溫控pH及持續攪拌之批次,氫氣、二氧化碳消耗與乙酸生成比例可接近4:2:1。
With the progress of technology and the development of industrial, it formed a lifestyle with mass production and mass consumption. In industrial process and combustion of fossil fuels, it would release a lot of carbon dioxide. The phenomenon caused global warming, climate change, glaciers melting and animals forced to leave their habitat. as a result, developing the technology of carbon fixation and low-carbon technique is very pressing. Flue gas of steel industrial contains H2 (about 60%) and CO2. Acentogenic bacteria or acetogen can convert H2 and CO2 to acetate. This study utilized the kind of acetogen, Acetobacterium woodii, to consume H2 and CO2 and to produce acetate and used different substrate and glucose concentration for batch study. Because of lower growing of acetogen, immobilization of cell (GAC and entrapment) was introduced to enhance cell density and efficiency in batch and reactor. The result indicated that with the presence of glucose the metabolism of A. woodii has three stages, which contain glucose converting to lactate stage, lactate degradation stage and acetate stable production stage. The biomass and acetate concentration were lower when only using H2 and CO2 as substrate without glucose. Higher cell concentration would gain higher acetate productivity from H2 and CO2. The productivity were 0.0273, 0.0119 and 0.0054 mmole/day for the OD value of 1.26, 0.76 and 0.33 respectively in batch experiments. The acetate productivity of immobilized batch was higher than suspended batch, and that of entrapped cell was higher than that of immobilized GAC. Using the entrapping method did not require additional glucose. The result of bubble column reactor with GAC indicated that higher gas flow rate would get higher gas consumption. However, the acetate productivities were similar (1.3 and 3.5 mmole/day for different round). Higher gas flow rate in bubble column reactor with entrapped cell would not cause higher gas consumption, and higher gas flow rate would cause lower acetate productivity, however, the productivity in it was higher than that in reactor with GAC (4.1, 4.8 and 6.2 mmole/day). In the batch with continuously pH and temperature controlling and stirring, the ratio of hydrogen and carbon dioxide consumption and acetate production was close to 4:2:1.
Abstract I
摘要 III
致謝 V
Content VII
Table of tables X
Table of Figures XI
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Carbon dioxide growth and global warming 3
2.2 The industrial processes and usage of acetate 5
2.3 Carbon dioxide fixation research 8
2.4 Acetogenic bacteria and gas fermentation 11
2.5 Different factor of gas fermentation for acetogenic bacteria 16
2.5.1 The effect of media composition 16
2.5.2 The effect of carbon and energy source 17
2.5.3 The effect of pH and buffer solution 18
2.5.4 The effect of inhibition of acetogen 18
2.5.5 The effect of mass transfer limitation 19
2.5.6 The effect of gaseous substrate pressure and component 20
2.6 Reactor design for acetogenic bacteria 21
2.7 Immobilization of microbial cells technology 23
2.7.1 The characteristic of Immobilization of microbial cells 23
2.7.2 The choice of Immobilization of microbial cells 24
2.7.3 Physical adsorption by Granular active carbon (GAC) 25
2.7.4 Entrapment 25
Chapter 3 Materials and Methods 27
3.1 Strain and growth conditions 27
3.2 Medium preparation 27
3.3 Suspended cell batch experiment 28
3.4 Immobilization of microbial cell test 29
3.4.1 Preparation of immobilized GAC 30
3.4.2 Preparation of entrapped cell 30
3.5 Reactor configurations and working condition 31
3.6 CO2 consumption test without carbonate-bicarbonate buffer 32
3.7 Analytical methods 33
3.8 Biomass analysis of immobilized cell 34
Chapter 4 Result and Discussion 37
4.1 Batch experiment under heterotrophic and/or autotrophic conditions 37
4.1.2 Result of group M 37
4.1.3 Result of group H 40
4.1.4 Summary and discussion 40
4.2 Batch experiment under different glucose concentration 41
4.2.1 Replacing headspace gas without continuously adding H2/CO2 41
4.2.2 Replacing headspace gas with continuously adding H2/CO2 43
4.3 Batch experiment using immobilized cell 46
4.3.1 Comparison of suspended cell and immobilized cell 49
4.3.2 Batch experiment using entrapped cell under different glucose concentrations 50
4.4 Bubble column reactor 51
4.4.1 Reactor with immobilized GAC 52
4.4.2 Reactor with entrapped cells 55
4.4.3 Summary and discussion in bubble column reactor 57
4.5 CO2 consumption test 59
Chapter 5 Conclusions 61
5.1 Conclusions 61
Chapter 6 Reference 63

Abubackar, H. N., M. C. Veiga and C. Kennes, Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels, Bioproducts and Biorefining, 5, (1), 93-114. (2011)

Agler, M. T., B. A. Wrenn, S. H. Zinder and L. T. Angenent, Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends in biotechnology, 29, (2), 70-78. (2011)

Ahamad, P. A. and A. M. Kunhi, Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation, 22, (2), 253-265. (2011)

Amos, W. A., Biological water-gas shift conversion of carbon monoxide to hydrogen. Milestone Completion Report, National Renewable Energy Laboratory (NREL) MP-560-35592, (2004)

Andreesen, J. R., A. Schaupp, C. Neurauter, A. Brown and L. G. Ljungdahl, Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2. Journal of bacteriology, 114, (2), 743-751. (1973)

Arcuri, E. J., R. M. Worden and S. E. Shumate II, Ethanol production by immobilized cells of Zymomonas mobilis. Biotechnology Letters, 2, (11), 499-504. (1980)

Bengelsdorf, F. R., M. Straub and P. Dürre, Bacterial synthesis gas (syngas) fermentation. Environ Technol, 34, (13-14), 1639-1651. (2013)

Bernalier, A., V. Rochet, M. Leclerc, J. Doré and P. Pochart, Diversity of H2/CO2-Utilizing Acetogenic Bacteria from Fecesof Non-Methane-Producing Humans. Current microbiology, 33, (2), 94-99. (1996)

Bredwell, M. D., P. Srivastava and R. M. Worden, Reactor Design Issues for Synthesis‐Gas Fermentations. Biotechnol Prog, 15, (5), 834-844. (1999)

Breznak, J. A., J. M. Switzer and H.-J. Seitz, Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Archives of microbiology, 150, (3), 282-288. (1988)

Brodelius, P. and K. Mosbach, Immobilized plant cells. Appl Biochem Biotechnol, 7, (1), 31-34. (1982)

Chang, I. S., B. H. Kim, R. W. Lovitt and J. S. Bang, Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612. Process Biochemistry, 37, (4), 411-421. (2001)

Chen, K.-C., S.-C. Lee, S.-C. Chin and J.-Y. Houng, Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme and microbial technology, 23, (5), 311-320. (1998)

Chen, K.-C. and Y.-F. Lin, Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme and microbial technology, 16, (1), 79-83. (1994)

Cheng, H.-H., L.-M. Whang, C.-W. Wu and M.-C. Chung, A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues. Bioresour Technol, 113, 23-29. (2012)

Cheung, H., R. S. Tanke and G. P. Torrence, Acetic Acid. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, (2011)

Chibata, I., T. Tosa and T. Sato, Immobilized aspartase-containing microbial cells: preparation and enzymatic properties. Applied microbiology, 27, (5), 878-885. (1974)

Cotter, J. L., M. S. Chinn and A. M. Grunden, Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme and microbial technology, 44, (5), 281-288. (2009)

Datar, R. P., R. M. Shenkman, B. G. Cateni, R. L. Huhnke and R. S. Lewis, Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng, 86, (5), 587-594. (2004)

Dyrssen, D., D. Turner, J. Paul and C. Pradier, Carbon Dioxide Chemistry: Environmental Issues, Athenaeum Press, Cambridge. (1994)

Fukui, S. and A. Tanaka, Immobilized microbial cells. Annual Reviews in Microbiology, 36, (1), 145-172. (1982)

Gaddy, J. L., Biological production of ethanol from waste gases with Clostridium ljungdahlii, Membrane Technology and Research, Inc., Menlo Park, CA (United States). (2000)

Genthner, B. S. and M. Bryant, Growth of Eubacterium limosum with carbon monoxide as the energy source. Applied and environmental microbiology, 43, (1), 70-74. (1982)

Genthner, B. S. and M. Bryant, Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Applied and environmental microbiology, 53, (3), 471-476. (1987)

Gentry, T., C. Rensing and I. Pepper, New approaches for bioaugmentation as a remediation technology. Critical reviews in environmental science and technology, 34, (5), 447-494. (2004)

Hileman, B., Greenhouse gases. Chem. Eng. News, 81, 12. (2003)

Hromatka, O. and H. Ebner, Vinegar by submerged oxidative fermentation. Industrial & Engineering Chemistry, 51, (10), 1279-1280. (1959)

Hutchinson, D. H. and C. W. Robinson, A microbial regeneration process for granular activated carbon—II. Regeneration studies. Water Research, 24, (10), 1217-1223. (1990)

IEA, CO2 emissions from fuel combustion-highlights 2015. International Energy Agency, (2015)

Imkamp, F. and V. Müller, Acetogenic Bacteria. (2007)

IPCC, Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Summary for Policymakers. Intergovernmental Panel on Climate Change, (2013)

Jo, J. H., D. S. Lee, D. Park and J. M. Park, Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresour Technol, 99, (14), 6666-6672. (2008)

Jones, J. H., The CativaTM process for the manufacture of acetic acid. Platinum Metals Review, 44, (3), 94-105. (2000)

Köpke, M., C. Mihalcea, J. C. Bromley and S. D. Simpson, Fermentative production of ethanol from carbon monoxide. Current Opinion in Biotechnology, 22, (3), 320-325. (2011)

Kantzow, C., A. Mayer and D. Weuster-Botz, Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. Journal of biotechnology, 212, 11-18. (2015)

Keweloh, H., H.-J. Heipieper and H.-J. Rehm, Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Applied Microbiology and Biotechnology, 31, (4), 383-389. (1989)

Kikuchi, A., M. Kawabuchi, M. Sugihara, Y. Sakurai and T. Okano, Pulsed dextran release from calcium-alginate gel beads. Journal of Controlled Release, 47, (1), 21-29. (1997)

Kim, B. R., E. S. Chian, W. H. Cross and S.-S. Cheng, Adsorption, desorption, and bioregeneration in an anaerobic, granular activated carbon reactor for the removal of phenol. Journal (Water Pollution Control Federation), 35-40. (1986)

Klasson, K., M. Ackerson, E. Clausen and J. Gaddy, Bioreactor design for synthesis gas fermentations. Fuel, 70, (5), 605-614. (1991)

Klein, J. and F. Wagner, Methods for the immobilization of microbial cells. Appl. Biochem. Bioeng, 4, (11), (1983)

Kundiyana, D. K., M. R. Wilkins, P. Maddipati and R. L. Huhnke, Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei. Bioresour Technol, 102, (10), 5794-5799. (2011)

Latif, H., A. A. Zeidan, A. T. Nielsen and K. Zengler, Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Current Opinion in Biotechnology, 27, 79-87. (2014)

Leclerc, M., L. Elfoul-Bensaid and A. Bernalier, Effect of yeast extract on growth and metabolism of H2-utilizing acetogenic bacteria from the human colon. Current microbiology, 37, (3), 166-171. (1998)

Lee, C.-G. and B. Ø. Palsson, High-density algal photobioreactors using light-emitting diodes. (1994)

Lyberatos, G. and I. Skiadas, Modelling of anaerobic digestion–a review. Global Nest Int J, 1, (2), 63-76. (1999)

Metz, B., O. Davidson, H. De Coninck, M. Loos and L. Meyer, Carbon dioxide capture and storage. (2005)

Mohammadi, M., G. D. Najafpour, H. Younesi, P. Lahijani, M. H. Uzir and A. R. Mohamed, Bioconversion of synthesis gas to second generation biofuels: a review. Renewable and Sustainable Energy Reviews, 15, (9), 4255-4273. (2011)

Moosbrugger, R., M. Wentzel, G. Ekama and G. Marais, Weak acid/bases and pH control in anaerobic systems-A review. WATER SA-PRETORIA-, 19, 1-1. (1993)

Munasinghe, P. C. and S. K. Khanal, Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol, 101, (13), 5013-5022. (2010)

Najafpour, G. and H. Younesi, Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii. Enzyme and microbial technology, 38, (1), 223-228. (2006)

Najafpour, G., H. Younesi and A. R. Mohamed, Effect of organic substrate on hydrogen production from synthesis gas using Rhodospirillum rubrum, in batch culture. Biochemical Engineering Journal, 21, (2), 123-130. (2004)

Nie, Y., H. Liu, G. Du and J. Chen, Acetate yield increased by gas circulation and fed-batch fermentation in a novel syntrophic acetogenesis and homoacetogenesis coupling system. Bioresour Technol, 99, (8), 2989-2995. (2008)

Nilsson, K., S. Birnbaum, S. Flygare, L. Linse, U. Schröder, U. Jeppsson, P.-O. Larsson, K. Mosbach and P. Brodelius, A general method for the immobilization of cells with preserved viability. European journal of applied microbiology and biotechnology, 17, (6), 319-326. (1983)

Patel, B., C. Monk, H. Littleworth, H. Morgan and R. M. Daniel, Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. International Journal of Systematic and Evolutionary Microbiology, 37, (2), 123-126. (1987)

Paul, D., F. W. Austin, T. Arick, S. M. Bridges, S. C. Burgess, Y. S. Dandass and M. L. Lawrence, Genome sequence of the solvent-producing bacterium Clostridium carboxidivorans strain P7T. Journal of bacteriology, 192, (20), 5554-5555. (2010)

Peters, V., P. Janssen and R. Conrad, Efficiency of hydrogen utilization during unitrophic and mixotrophic growth of Acetobacterium woodii on hydrogen and lactate in the chemostat. FEMS microbiology ecology, 26, (4), 317-324. (1998)

Pfennig, N., Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. International Journal of Systematic and Evolutionary Microbiology, 28, (2), 283-288. (1978)

Phelps, C. and L. Young, Microbial metabolism of the plant phenolic compounds ferulic and syringic acids under three anaerobic conditions. Microbial ecology, 33, (3), 206-215. (1997)

Richter, H., S. E. Loftus and L. T. Angenent, Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity. Environ Technol, 34, (13-14), 1983-1994. (2013)

Roddy, D. J., A syngas network for reducing industrial carbon footprint and energy use. Applied Thermal Engineering, 53, (2), 299-304. (2013)

Sano, K. i., H. Uchida and S. Wakabayashi, A new process for acetic acid production by direct oxidation of ethylene. Catalysis Surveys from Asia, 3, (1), 55-60. (1999)

Saxena, J. and R. S. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. Journal of industrial microbiology & biotechnology, 38, (4), 513-521. (2011)

Schiel-Bengelsdorf, B. and P. Dürre, Pathway engineering and synthetic biology using acetogens. FEBS letters, 586, (15), 2191-2198. (2012)

Schwartz, R. D. and F. A. Keller, Isolation of a strain of Clostridium thermoaceticum capable of growth and acetic acid production at pH 4.5. Applied and environmental microbiology, 43, (1), 117-123. (1982)

Seoud, M. A. and R. Maachi, Biodegradation of naphthalene by free and alginate entrapped Pseudomonas sp. Zeitschrift für Naturforschung C, 58, (9-10), 726-731. (2003)

Shen, Y., Attached-growth bioreactors for syngas fermentation to biofuel. (2013)

Shepherd, W. D., Energy Studies, World Scientific Publishing Co. Pte. Ltd, (1998)

Shishido, M. and M. Toda, Simulation of oxygen concentration profile in calcium alginate gel beads entrapping microbes during biological phenol degradation. Chemical engineering science, 51, (6), 859-872. (1996)

Sim, J. H., A. H. Kamaruddin, W. S. Long and G. Najafpour, Clostridium aceticum—A potential organism in catalyzing carbon monoxide to acetic acid: Application of response surface methodology. Enzyme and microbial technology, 40, (5), 1234-1243. (2007)

Straub, M., M. Demler, D. Weuster-Botz and P. Dürre, Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. Journal of biotechnology, 178, 67-72. (2014)

Suzuki, T., T. Matsuo, K. Ohtaguchi and K. Koide, Continuous Production of Acetic Acid from CO2 in Repeated-batch Cultures Using Flocculated Cells of Acetobacterum Woodii. Journal of chemical engineering of Japan, 26, (5), 459-462. (1993)

Suzuki, T., Y. Nagashima, K. Ohtaguchi and K. Koide, Kinetics of production of acetic acid from carbon dioxide by Acetobacterium woodii in bubble-column bioreactor. Journal of chemical engineering of Japan, 25, (1), 106-108. (1992)

Tirado-Acevedo O. Production of bioethanol from synthesis gas using Clostridium ljungdahlii as a microbial catalyst. North Carolina State University. (2010)

Trevors, J., J. Van Elsas, H. Lee and L. Van Overbeek, Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Releases, 1, 61-69. (1992)

Tschech, A. and N. Pfennig, Growth-Yield Increase Linked to Caffeate Reduction in Acetobacterium-Woodii. Archives of microbiology, 137, (2), 163-167. (1984)

Tschech, A. and N. Pfennig, Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Archives of microbiology, 137, (2), 163-167. (1984)

Tsen, J.-H., Y.-P. Lin and V. A.-E. King, Fermentation of banana media by using κ-carrageenan immobilized Lactobacillus acidophilus. International journal of food microbiology, 91, (2), 215-220. (2004)

UN, Framework Convention on Climate Change (COP21). (2015)

Ungerman, A. J. and T. J. Heindel, Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol Prog, 23, (3), 613-620. (2007)

Vega, J., S. Prieto, B. Elmore, E. Clausen and J. Gaddy, The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol, 20, (1), 781-797. (1989)

Voice, T. C., D. Pak, X. Zhao, J. Shi and R. F. Hickey, Biological activated carbon in fluidized bed reactors for the treatment of groundwater contaminated with volatile aromatic hydrocarbons. Water Research, 26, (10), 1389-1401. (1992)

Wolsky, A., E. Daniels and B. Jody, CO2 capture from the flue gas of conventional fossil‐fuel‐fired power plants. Environmental Progress, 13, (3), 214-219. (1994)

Wu, W.-M., M. K. Jain, E. C. De Macario, J. H. Thiele and J. G. Zeikus, Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Applied Microbiology and Biotechnology, 38, (2), 282-290. (1992)

Xu, S., B. Fu, L. Zhang and H. Liu, Bioconversion of H2/CO2 by acetogen enriched cultures for acetate and ethanol production: the impact of pH. World Journal of Microbiology and Biotechnology, 31, (6), 941-950. (2015)

Yang, P., Z. Fang and Y. Shi, Comparison between porous polymer carrier and activated carbon carrier used for treating organic wastewater in anaerobic fluidized-bed reactor. 環境科學, 22, (1), 45-48. (2001)

Younesi, H., G. Najafpour and A. R. Mohamed, Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochemical Engineering Journal, 27, (2), 110-119. (2005)

Zhang, F., J. Ding, N. Shen, Y. Zhang, Z. Ding, K. Dai and R. J. Zeng, In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Applied Microbiology and Biotechnology, 97, (23), 10233-10240. (2013)

Zhang, Z.-P., J.-H. Tay, K.-Y. Show, R. Yan, D. T. Liang, D.-J. Lee and W.-J. Jiang, Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. International journal of hydrogen energy, 32, (2), 185-191. (2007)

田宮博與渡邊篤,藻類實驗法,南江堂,東京都。(1965)

陳國誠,微生物酵素工程學,藝軒出版社,台北市。(1992)

陳國誠,生物固定化技術與產業應用,茂昌圖書有限公司,台北市。(2000)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔