(3.235.236.13) 您好!臺灣時間:2021/05/15 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉仲鈞
研究生(外文):Chung-ChunLiu
論文名稱:化學氧化法結合界面活性劑處理受戴奧辛污染土壤之研究
論文名稱(外文):The study of treating PCDD/Fs contaminated soil by surfactant-enhanced chemical oxidation
指導教授:張祖恩張祖恩引用關係
指導教授(外文):Juu-En Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:153
中文關鍵詞:化學氧化法界面活性劑土壤有機污染戴奧辛
外文關鍵詞:PCDD/Fssurfactantchemical oxidationsoil pollution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
戴奧辛類化合物為目前已知毒性最強的致癌性化學物質之一,現階段受中低濃度戴奧辛污染土壤缺少較合適處理方式,化學氧化法是透過氧化劑與污染物接觸進而破壞污染物的處理技術,具有效率高和可實場操作之潛力。然而氧化劑和有機污染物異相間質量傳輸的障礙往往成為化學氧化法效果的限制因子,本研究嘗試利用Triton X-100、Tween 80作為界面活性劑,十二烷基苯磺酸鈉(SDBS)作為輔劑以增加戴奧辛類化合物之水溶性,並使用過碳酸鈉(Sodium percarbonate, Na2CO3•1.5H2O2)和過硫酸鈉(Sodium persulfate, Na2S2O8)作為氧化劑,以化學氧化法結合界面活性劑處理毒性當量為141,000 ng I-TEQ/kg受戴奧辛污染土壤,評估適用反應條件與接續生物處理之可能性,期望能有效去除土壤中戴奧辛類化合物。研究結果顯示以SDBS取代部分非離子性界面活性劑能有效提升從土中溶出OCDD的能力,Tween 80因為結構不相似於OCDD,使其對於OCDD之增溶能力不佳,Triton X-100對於OCDD的增溶效果優於Tween 80,而Triton X-100:SDBS為7:3的界面活性劑有最好的增溶效果,在濃度20g/L時可溶出25%之OCDD至水相之中。此外,系統中OCDD/F去除效果最好之氧化劑配比依序為使用50mM的0:1、3:1、2:1氧化劑(過碳酸鈉:過硫酸鈉),但考量氧化劑的特性,選用3:1為最佳配比,對OCDD去除率可達60%,對OCDF去除率可達36%。將最佳配比應用於土壤後,總毒性當量降低至83,500 ng I-TEQ/kg,毒性當量去除率為40.7%,證實為界面活性劑結合化學氧化法為具有潛力的整治方法。
Chemical oxidation is a common treatment in soil organic pollution which has a high removal rate and short remediate duration. Although it has many advantages, the heterophase between oxidant and pollutant will often become a limitation to removal efficiency. Therefore, Triton X-100, Tween 80 and sodium dodecylbenzenesulfonate (SDBS) were used as surfactant to enhance the solubility of PCDD/Fs. In addition, sodium percarbonate (SPC) and sodium persulfate (Na2S2O8) were used as oxidant. By combining the reagents, it is expected that the chance of PCDD/Fs oxidation would raise thus the increases the removal rate.

The results showed that the PCDD/Fs concentration in liquid phase raised when surfactants were added in the contaminated soil. Furthermore, the results also showed that replaced certain level of Triton X-100 and Tween 80 with SDBS would increase the solubilization ability of surfactant. When the mass ratio between Triton X-100 and SDBS equals to 7:3 and the concentration of surfactant is 25g/L, 25% of OCDD would be partitioned into liquid phase, which had the best performance. The oxidation experiment results showed that using 50mM of Na2S2O8 and mixed oxidant (SPC: Na2S2O8 = 3:1, C3S1) had the highest OCDD/F removal rate. Considering the toxicity of oxidants, C3S1 was chose as the best oxidant. After applying it in a larger batch test, the toxicity equivalent concentration in soil had decreased 40.7% from 141,000I-TEQ ng/kg which indicated that treating PCDD/Fs contaminated soil by surfactant-enhanced chemical oxidation is a method with development potential.

摘 要 I
誌 謝 VI
目 錄 VIII
表目錄 XI
圖目錄 XIII
第一章 前 言 1
1-1研究動機與目的 1
1-2研究內容 2
第二章 文獻回顧 4
2-1持久性有機污染物之特性概述 4
2-1-1持久性有機污染物之基本特性 4
2-1-2戴奧辛之基本特性 7
2-1-3戴奧辛污染場址案例 11
2-2土壤污染整治技術 17
2-2-1通用土壤污染整治技術 17
2-2-2土壤重金屬污染整治技術 19
2-2-3土壤有機污染整治技術 20
2-3現地化學氧化技術 24
2-3-1現地化學氧化之簡介 24
2-3-2過碳酸鹽氧化法的原理及應用 30
2-3-3過硫酸鹽氧化法的原理與應用 35
2-3-4影響過碳酸及過硫酸鹽氧化反應之因子 39
2-4土壤淋洗/清洗技術 50
2-4-1界面活性劑之簡介 50
2-4-2界面活性劑於土壤淋洗/清洗技術原理與應用 53
2-4-3影響淋洗/清洗效果之因子 61
2-5小結 64
第三章 研究材料、設備與方法 66
3-1研究架構與流程 66
3-2研究材料與設備分析 69
3-2-1受戴奧辛污染土壤前處理 69
3-2-2實驗試藥 69
3-2-3儀器設備 70
3-3實驗設計與分析方法 75
3-3-1臨界微胞濃度之測定方法 75
3-3-2 OCDD於土水相分布測定實驗 77
3-3-3受戴奧辛污染土壤之氧化實驗 78
3-3-4受戴奧辛污染土壤之批次降解實驗 78
3-3-5受戴奧辛污染土壤之浸泡式管柱降解實驗 79
3-3-6 分析方法 81
第四章 結果與討論 85
4-1受污染土壤基本特性與臨界微胞濃度 85
4-1-1受戴奧辛污染土壤之基本特性 85
4-1-2界面活性劑之臨界微胞濃度 92
4-1-3 小結 99
4-2界面活性劑對受污染土壤之清洗效果 100
4-2-1界面活性劑混合比例對於OCDD水相濃度的影響 100
4-2-2界面活性劑濃度對於OCDD分布的影響 103
4-2-3界面活性劑對OCDD於土水相分布的影響 107
4-2-4小結 110
4-3不同氧化劑配比處理土壤中OCDD/F之效果 111
4-3-1氧化劑混合比例對於OCDD/F去除效果的影響 111
4-3-2氧化劑濃度對於OCDD/F去除率的影響 119
4-3-3反應後系統OCDD/F之殘留濃度和去除率 128
4-3-4小結 130
4-4界面活性劑結合化學氧化法處理受戴奧辛污染土壤之效果 132
4-4-1戴奧辛種類及濃度之去除率 132
4-4-2 浸泡式管柱反應器處理受戴奧辛污染土壤之效果 134
4-4-3 小結 138
第五章 結論與建議 140
5-1結論 140
5-2建議 142
參考文獻 143

ASTDR. Toxicological profile for chlorodibenzofurans. (1994)
ASTDR. Toxicological profile for chlorinated dibenzo-p-dioxins. (1998)
ASTM International. STP1075. Determination of OCDD and OCDF in soils and biological samples by GC/ECD. (1991)
Bu, L., S. Zhou, Z. Shi, L. Deng, G. Li, Q. Yi and N. Gao. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways. Environ Sci Pollut Res Int 23(3): 2848-2855. (2016)
Cajal-Mariñosa, P., R. G. d. l. Calle, F. J. Rivas and T. Tuhkanen. Impacts of Changing Operational Parameters of In Situ ChemicalOxidation (ISCO) on Removal of Aged PAHs from Soil. Journal of Advanced Oxidation technologies 15(2): 429-436. (2012)
Cao, J., H. Guo, H. M. Zhu, L. Jiang and H. Yang. Effects of SOM, surfactant and pH on the sorption-desorption and mobility of prometryne in soils. Chemosphere 70(11): 2127-2134. (2008)
Cao, J., W.-X. Zhang, D. G. Brown and D. Sethi. Oxidation of lindane with Fe (II)-activated sodium persulfate. Environmental Engineering Science 25(2): 221-228.(2008)
Chou, Y. C., S. L. Lo, J. Kuo and C. J. Yeh. Microwave-enhanced persulfate oxidation to treat mature landfill leachate. J Hazard Mater 284: 83-91. (2015)
Conrad, S. H., R. J. Glass and W. J. Peplinski. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate. Journal of Contaminant Hydrology 58(1): 13-49. (2002)
Cravotto, G., S. Di Carlo, B. Ondruschka, V. Tumiatti and C. M. Roggero. Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves. Chemosphere 69(8): 1326-1329. (2007)
Cullity, B. D. and S. R. Stock. Elements of X-ray Diffraction, Prentice Hall. (2001)
Cuypers, C., T. Pancras, T. Grotenhuis and W. Rulkens. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46(8): 1235-1245. (2002)
Danish, M., X. Gu, S. Lu and M. Naqvi. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ Sci Pollut Res Int 23(13): 13298-13307. (2016)
de la Calle, R. G., O. Gimeno and J. Rivas. Percarbonate as a Hydrogen Peroxide Carrier in Soil Remediation Processes. Environmental Engineering Science 29(10): 951-956. (2012)
De Laat, J., G. Truong Le and B. Legube. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere 55(5): 715-723. (2004)
Deitsch, J. J. and J. A. Smith. Effect of Triton X-100 on the rate of trichloroethene desorption from soil to water. Environmental Science & Technology 29(4): 1069-1080. (1995)
Deng, D., X. Lin, J. Ou, Z. Wang, S. Li, M. Deng and Y. Shu. Efficient chemical oxidation of high levels of soil-sorbed phenanthrene by ultrasound induced, thermally activated persulfate. Chemical Engineering Journal 265: 176-183. (2015)
Diao, Z.-H., X.-R. Xu, D. Jiang, L.-J. Kong, Y.-X. Sun, Y.-X. Hu, Q.-W. Hao and H. Chen. Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions. Chemical Engineering Journal 302: 213-222. (2016)
Fang, G.-D., D. D. Dionysiou, S. R. Al-Abed and D.-M. Zhou. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs. Applied Catalysis B: Environmental 129: 325-332. (2013)
Forsey, S. P.. In situ Chemical Oxidation of Creosote/Coal Tar Residuals:Experimental and Numerical Investigation. Earth Sciences, University of Waterloo. (2004)
Federal Remediation Technologies Roundtable. Remediation Technologies Screening Matrix and reference guide. (2002)
Fu, X., X. Gu, S. Lu, Z. Miao, M. Xu, X. Zhang, Z. Qiu and Q. Sui. Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution. Chemical Engineering Journal 267: 25-33. (2015)
Fu, X., X. Gu, S. Lu, M. Xu, Z. Miao, X. Zhang, Y. Zhang, Y. Xue, Z. Qiu and Q. Sui. Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated-Fe(II). Chemical Engineering Journal 285: 180-188. (2016)
Gevao, B., K. T. Semple and K. C. Jones. Bound pesticide residues in soils: a review. Environmental Pollution 108(1): 3-14. (2000)
Gibbs, L. M.. Dying from dioxin: A citizen's guide to reclaiming our health and rebuilding democracy, Black Rose Books Ltd. (1997)
Goff, H. D.. Colloidal aspects of ice cream—a review. International Dairy Journal 7(6): 363-373. (1997)
Guo, H., Z. Liu, S. Yang and C. Sun. The feasibility of enhanced soil washing of p-nitrochlorobenzene (pNCB) with SDBS/Tween80 mixed surfactants. J Hazard Mater 170(2-3): 1236-1241. (2009)
Hem, J. D.. Study and interpretation of the chemical characteristics of natural water, Department of the Interior, US Geological Survey. (1985)
Hossain, G. and R. McLaughlan. Sorption of chlorophenols from aqueous solution by granular activated carbon, filter coal, pine and hardwood. Environ Technol 33(16): 1839-1846. (2012)
Huling, S. G., S. Ko, S. Park and E. Kan. Persulfate oxidation of MTBE- and chloroform-spent granular activated carbon. J Hazard Mater 192(3): 1484-1490. (2011)
ITRC. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater. T. I. T. R. Council. (2005)
Jafvert, C. T.. Sediment-and saturated-soil-associated reactions involving an anionic surfactant (dodecyl sulfate). 2. Partition of PAH compounds among phases. Environmental Science & Technology 25(6): 1039-1045.(1991)
Jafvert, C. T. and J. K. Heath. Sediment-and saturated-soil-associated reactions involving an anionic surfactant (dodecylsulfate). 1. Precipitation and micelle formation. Environmental Science & Technology 25(6): 1031-1038.(1991)
Karagunduz, A., A. Gezer and G. Karasuloglu. Surfactant enhanced electrokinetic remediation of DDT from soils. Sci Total Environ 385(1-3): 1-11. (2007)
Katsumata, H., S. Kaneco, T. Suzuki, K. Ohta and Y. Yobiko. Degradation of polychlorinated dibenzo-p-dioxins in aqueous solution by Fe(II)/H2O2/UV system. Chemosphere 63(4): 592-599. (2006)
Killian, P. F., C. J. Bruell, C. Liang and M. C. Marley. Iron (II) Activated Persulfate Oxidation of MGP Contaminated Soil. Soil and Sediment Contamination 16(6): 523-537. (2007)
Krüss, CMC. http://www.kruss.de/services/education-theory/glossary/cmc/. Surface tension of a surfactant solution with increasing concentration.
Kulik, N., A. Goi, M. Trapido and T. Tuhkanen. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. Journal of Environmental Management 78(4): 382-391. (2006)
Kusic, H., I. Peternel, N. Koprivanac and A. Loncaric Bozic. Iron-Activated Persulfate Oxidation of an Azo Dye in Model Wastewater: Influence of Iron Activator Type on Process Optimization. Journal of Environmental Engineering 137(6): 454-463. (2011)
Lee, J.-M., J.-H. Kim, Y.-Y. Chang and Y.-S. Chang. Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins. Journal of Hazardous Materials 163(1): 222-230. (2009)
Lee, W.-J., S.-I. Shih, C.-Y. Chang, Y.-C. Lai, L.-C. Wang and G.-P. Chang-Chien. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils. Journal of Hazardous Materials 160(1): 220-227. (2008)
Lei, Y., C.-S. Chen, Y.-J. Tu, Y.-H. Huang and H. Zhang. Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions. Environmental Science & Technology 49(11): 6838-6845. (2015)
Lemaire, J., V. Croze, J. Maier and M.-O. Simonnot. Is it possible to remediate a BTEX contaminated chalky aquifer by in situ chemical oxidation? Chemosphere 84(9): 1181-1187. (2011)
Liang, C., Z. S. Wang and C. J. Bruell. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66(1): 106-113. (2007)
Liang, C., Z. S. Wang and N. Mohanty. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C. Sci Total Environ 370(2-3): 271-277. (2006)
Liang, C. J., C. J. Bruell, M. C. Marley and K. L. Sperry. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination: An International Journal 12(2): 207-228. (2003)
Liu, Y., A. Zhou, Y. Gan and X. Li. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions. Sci Total Environ 548-549: 1-5 (2016).
Liu, Z., D. A. Edwards and R. G. Luthy. Sorption of non-ionic surfactants onto soil. Water Research 26(10): 1337-1345.(1992)
Matta, R., K. Hanna and S. Chiron. Fenton-like oxidation of 2, 4, 6-trinitrotoluene using different iron minerals. Science of the Total Environment 385(1): 242-251. (2007)
McKay, G.. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal 86(1): 348-368. (2002)
Miao, Z., X. Gu, S. Lu, X. Zang, X. Wu, M. Xu, L. B. B. Ndong, Z. Qiu, Q. Sui and G. Y. Fu. Perchloroethylene (PCE) oxidation by percarbonate in Fe 2+-catalyzed aqueous solution: PCE performance and its removal mechanism. Chemosphere 119: 1120-1125. (2015)
Miraglio, M. A.. Base-activated persulfate treatment of contaminated soils with pH drift from alkaline to circumneutral, Washington State University. (2009)
Mulligan, C. N. and F. Eftekhari. Remediation with surfactant foam of PCP-contaminated soil. Engineering Geology 70(3): 269-279. (2003)
NAVFAC. Surfactant-Enhanced Aquifer Remediation (SEAR) Design Manual. N. F. E. Command. (2002)
Oh, S.-Y. and D.-S. Shin. Treatment of Diesel-Contaminated Soil by Fenton and Persulfate Oxidation with Zero-Valent Iron. Soil and Sediment Contamination: An International Journal 23(2): 180-193. (2013)
Pardo, F., A. Santos and A. Romero. Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: A column study. Sci Total Environ 566-567: 480-488. (2016)
Paria, S.. Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci 138(1): 24-58. (2008)
Peng, S., W. Wu and J. Chen. Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness. Chemosphere 82(8): 1173-1177. (2011)
Pennell, K. D., L. M. Abriola and W. J. Weber Jr. Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation. Environmental Science & Technology 27(12): 2332-2340. (1993)
Rodriguez-Cruz, M. S., M. J. Sanchez-Martin and M. Sanchez-Camazano. A comparative study of adsorption of an anionic and a non-ionic surfactant by soils based on physicochemical and mineralogical properties of soils. Chemosphere 61(1): 56-64. (2005)
Roshani, B. and N. K. Leitner. Effect of persulfate on the oxidation of benzotriazole and humic acid by e-beam irradiation. J Hazard Mater 190(1-3): 403-408. (2011)
Ruppert, G. and R. Bauer. Mineralization of cyclic organic watercontaminants by the photo-fenton reaction -influence of structure and substituents. Chemosphere 27(8): 1339-1347. (1993)
Salager, J.-L.. Surfactants Types and Uses. Laboratorio de Formulación, Interfaces, Reología y Procesos. (2002)
Satapanajaru, T., M. Yoo-iam, P. Bongprom and P. Pengthamkeerati. Decolorization of Reactive Black 5 by persulfate oxidation activated by ferrous ion and its optimization. Desalination and Water Treatment 56(1): 121-135. (2015)
Sherwood, M. K. and D. P. Cassidy. Modified Fenton oxidation of diesel fuel in arctic soils rich in organic matter and iron. Chemosphere 113: 56-61. (2014)
Sigma. Product Information- Triton X-100.
Skoog, D. A., F. J. Holler and S. R. Crouch. Principles of Instrumental Analysis, Thomson Brooks/Cole (2007)
Smaranda, C. and M. Gavrilescu. Migration and fate of persistent organic pollutants in the atmosphere-a modelling approach. Environmental Engineering and Management Journal 7(6): 743-761. (2008)
Sun, H. W. and Q. S. Yan. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene. J Hazard Mater 144(1-2): 164-170. (2007)
Sun, S., W. P. Inskeep and S. A. Boyd. Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant. Environmental Science & Technology 29(4): 903-913. (1995)
Sutton, N. B., J. T. C. Grotenhuis, A. A. M. Langenhoff and H. H. M. Rijnaarts. Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies. Journal of Soils and Sediments 11(1): 129-140. (2010)
Tanford, C.. The Hydrophobic Effect: Formation of Micelles and Biological Membranes 2d Ed, J. Wiley. (1980)
Tsai, T. T., C. M. Kao and A. Hong. Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation--a laboratory feasibility study. J Hazard Mater 171(1-3): 571-576. (2009)
USDA, Soil Texture Calculator. Soil texture triangle. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167.
USEPA. Solidification/stabilization use at superfound sites. (2000)
USEPA. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. (2004)
USEPA. A Citizen's Guide to In Situ Chemical Oxidation. (2012)
USP technologies. Hydrogen Peroxide (H_2 O_2) Safety and Handling Guidelines.http://www.h2o2.com/technical-library/default.aspx?pid= 66&name=Safety-amp-Handling
Vicente, F., A. Santos, A. Romero and S. Rodriguez. Kinetic study of diuron oxidation and mineralization by persulphate: Effects of temperature, oxidant concentration and iron dosage method. Chemical Engineering Journal 170(1): 127-135.(2011)
Viisimaa., M. and A. Goi.. Use of hydrogen peroxide and percarbonate to treat chlorinated aromatic hydrocarboncontaminated soil. Journal of Environmental Engineering and Landscape Management 22(1): 30-39. (2014)
WRHA. Pandemic H1N1 (pH1N1) Influenza Vaccine Quick Reference Guide. (2009)
Xie, P., J. Ma, W. Liu, J. Zou, S. Yue, X. Li, M. R. Wiesner and J. Fang. Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. Water Res 69: 223-233.(2015)
Yan, Y. E. and F. W. Schwartz. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. Journal of Contaminant Hydrology 37. (1999)
Yang, K., L. Zhu and B. Xing. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environmental Science & Technology 40(13): 4274-4280. (2006)
Yeh, C. K.-J., Y.-A. Kao and C.-P. Cheng. Oxidation of chlorophenols in soil at natural pH by catalyzed hydrogen peroxide: the effect of soil organic matter. Chemosphere 46(1): 67-73. (2002)
Zang, X., X. Gu, S. Lu, Z. Qiu, Q. Sui, K. Lin and X. Du. Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe2+ system. Environ Technol 35(5-8): 791-798. (2014)
Zhao, D., X. Liao, X. Yan, S. G. Huling, T. Chai and H. Tao. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254-255: 228-235. (2013)
Zhao, Q., L. Weise, P. Li, K. Yang, Y. Zhang, D. Dong, P. Li and X. Li. Ageing behavior of phenanthrene and pyrene in soils: a study using sodium dodecylbenzenesulfonate extraction. Journal of Hazardous Materials 183(1): 881-887. (2010)
Zheng, Z. and J. P. Obbard. Removal of polycyclic aromatic hydrocarbons from soil using surfactant and the white rot fungus Phanerochaete chrysosporium. Journal of Chemical technology and Biotechnology 75(12): 1183-1189. (2000)
Zhou, L., W. Song, Z. Chen and G. Yin. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environ Sci Technol 47(8): 3833-3839. (2013)
行政院環境保護署土壤及地下水污染整治基金管理會,96整治年報,行政院環保署土壤及地下水污染整治基金管理委員會,2007。
王琳麒,戴奧辛,科學發展,第421期,第18~24頁,2008。
王鳳英,界面活性劑的原理與應用,高立圖書有限公司,1993。
北原文雄編 ; 賴耿陽譯撰,界面活性劑應用實務,復漢出版社,1983。
台南市政府中石化台鹼安順廠整治場址網站,http://epb3.tainan.gov.tw/cpdc/ch/
台南市環保局,中石化安順廠污染防制手冊,台南市環境保護局,2012。
行政院環境保護署,廢棄物中灰分、可燃分測定方法,NIEA R205.01C,2003。
行政院環境保護署,土壤酸鹼值(pH值)測定方法-電極法,NIEA S410.62C,2008。
余剛、牛軍峰、黃俊,持久性有機污染物——新的全球性環境問題,科學出版社,2005。
吳文娟、陳文德、許佩瑜,斯德哥爾摩公約發展趨勢與我國對應政策,工業污染防治,第101期,第137~144頁,2007。
李昌樺、楊毓中、徐啟銘,重大化災回顧系列(一)-義大利薩維梭(Seveso)事件,中國化學工程學會會刊,2000。
李宗翰,鐵渣泥製劑應用於類芬頓反應處理含氯苯環化合物污染土壤之研究,國立成功大學環境工程學系碩士論文,2012。
林玲珠,國土規劃應重視褐地再利用,國家政策研究基金會,2013
林群勛,都市垃圾焚化廠周界環境中空氣、植物及土壤所含多氯戴奧辛/呋喃之調查研究,國立成功大學環境醫學研究所,碩士論文,2003。
張木彬,世紀之毒你擔「辛」嗎?,科學發展月刊,第387 期,第12~19頁,2005。
徐明宏,界面活性劑對土壤/水系統中有機污染物傳輸特性之影響及其土壤污染整治應用評估,國立中央大學環境工程學系博士論文,2004。
陳呈芳,戴奧辛污染土壤整治技術,水利土木科技資訊,第33期,2006。
游顥,環境污染整治政策形成之研究--以中石化(台鹼)安順廠為例,國立成功大學政治經濟學研究所碩士論文,2008。
黃煥彰,~台鹼三部曲~正義的曙光,看守台灣,第6卷,第1期,第18~25頁,2004。
黃煥彰,失落的記憶~台鹼二部曲,看守臺灣,第5卷,第2期,第28~40 頁,2003。
葉珮君,高級氧化法處理含苯環持久性污染物之研究,國立成功大學環境工程學系碩士論文,2015。
經濟部工業局,持久性有機污染物斯德哥爾摩公約記事,工安環保報導,第32卷,第10~13頁,2006。
趙承琛,工業升級之特用化學品-界面活性劑,復文書局,1993。
蔡岡廷、王建楠,戴奧辛污染與健康危害,中華職業醫學雜誌,第14卷,第4期,第261~268頁,2007。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top