( 您好!臺灣時間:2024/07/16 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Photocatalytic reduction of CO2 to C1 Fuels by (Cu/ZnO)@TiO2 yolk-shell nanoreactors
指導教授(外文):Hong-Paul Wang
外文關鍵詞:CO2photocatalysis(Cu/ZnO)@TiO2 nanoreactorsEXAFSethanolC1 fuels
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
隨著人類對能源的依賴提高,大量使用化石燃料衍生過量CO2排放,造成全球氣溫提升,衍生極端氣候變遷,因此CO2減量成為國際重要之氣候議題。若能利用光催化還原CO2及H2O轉化成醇類燃料,成為有利之生態化碳循環利用。因此,本研究重點是發展常壓、常溫光催化轉化CO2生成醇類燃料技術,尤其探討新型奈米反應器 (nanoreactor)在光催化反應扮演之角色。利用醣類化合物(β-Cyclodextrin (CD))與Cu2+、Zn2+形成錯合物,碳化生成(Cu/ZnO)@C奈米核殼(core-shell)物質,另外也以titanium butoxide水解包覆於Cu/ZnO,經煅燒生成(Cu/ZnO)@TiO2奈米核殼(core-shell)物質,再利用酸萃取部分金屬,分別生成(Cu/ZnO)@C與(Cu/ZnO)@TiO2 (yolk-shell)奈米反應器,應用於光催化還原CO2轉化為C1燃料。
包覆在碳殼內之光催化活性機(Cu/ZnO)之平均粒徑在3-18 nm之間。X光散射儀(XRD)與同步輻射延伸X光吸收細微結構(EXAFS)分析發現碳殼內ZnO表面富含CuO。在常溫、常壓下經過6小時的UV-Vis (Xe)光照射,CO2轉化生成甲醇(8.31-9.38 μmol/g-ZnO)。同步輻射X光吸收進邊緣結構(XANES)結果顯示CuO對甲醇有較佳的選擇性與產率。(Cu/ZnO)@C奈米反應器之甲醇產率為無碳殼包覆之Cu/ZnO之1.5-1.8倍,顯示碰撞頻率因子(Arrhenius pre-exponential factors) 在奈米反應器內有效提升50~80%。另外,經6小時之 UV-Vis光照射,包覆在TiO2殼之Cu/ZnO ((Cu/ZnO)@TiO2)奈米反應器光催化CO2轉化生成乙醇(10.74-16.96 μmol/g-catalyst),可能因光催化產物甲醇與其他C1燃料在(Cu/ZnO)@TiO2¬奈米反應器內,再與自由基聚合反應生成乙醇。

The massive use of fossil fuels has resulted in excessive CO2 emission, which caused global warming and extreme climate change. Therefore, reduction of CO2 has become one of the most concerned issues worldwide. CO2 and H2O can be photocatalytically converted to C1-C2 chemicals or fuels for a natural carbon cycling. Therefore, the main objective was to study the feasibility for photocatalytic reduction of CO2 by the novel nanoreactors. The (Cu/ZnO)@C core-shell nanoparticles were synthesized by carbonization of Cu2+- and Zn2+-β-Cyclodextrin complexes at 673 K. In addition, TiO2 was coated on the surface of the Cu/ZnO nanocomposites to form (Cu/ZnO)@TiO2 core-shell nanoparticles. The core metals were partially etched to yield (Cu/ZnO)@C and (Cu/ZnO)@TiO2 yolk-shell nanoreactors for photocatalytic reduction of CO2.
The core Cu/ZnO encapsulated in carbon-shell ((Cu/ZnO)@C yolk-shell) have average diameters of 3-18 nm. After a 6-h irradiation, CO2 in (Cu/ZnO)@C yolk-shell nanoreactors can be converted to methanol (8.31-9.38 μmol/g-ZnO). It seems that CuO plays the role of promoting photocatalytic activity and selectively for C1 products. The (Cu/ZnO)@C yolk-shell nanoreactors have greater methanol yields than the nano Cu/ZnO composites by 1.5-1.8 times mainly due to the fact of that the Arrhenius pre-exponential factors (A) between CO2 and photoactive sites within the nanoreactors are increased by 50-80%. However, after a 6-h irradiation, in the (Cu/ZnO)@TiO2 nanoreactors, 10.74-16.96 μmol/g-catalyst of C2H5OH are yielded. It is very likely that methanol and other C1 species in the (Cu/ZnO)@TiO2 yolk-shell nanoreactors may be polymerized with the photo-induced radicals, and converted to ethanol.

摘要 I
致謝 III
2.1 CO2 Reduction 3
2.1.1 CO2 capture and storage 7
2.1.2 CO2 conversion 9
2.2 Core-shell Nanoparticles 16
2.3 Yolk-shell Nanoparticles 18
2.4 Photocatalysts 21
2.4.1 Properties of photocatalysts 21
2.4.2 TiO2 and ZnO 31
2.4.3 Photocatalytic degradation of pollutants 36
3.1 Experimental Procedures 37
3.2 Preparations of Photocatalysts 39
3.2.1 Preparations of the Cu/ZnO nanocomposites 39
3.2.2 Preparations of the (Cu/ZnO)@C yolk-shell nanoreactors 39
3.2.3 Preparations of (Cu/ZnO)@TiO2 yolk-shell nanoreactors 40
3.3 Photocatalytic Reduction of CO2 and H2O and Degradation of Methylene Blue 41
3.3.1 Photocatalytic reduction of CO2 and H2O 41
3.3.2 Photocatalytic degradation of methylene blue (MB) 41
3.4 Characterization 44
3.4.1 X-ray Diffraction (XRD) 44
3.4.2 Field Emission-Scanning/Transmission Electron Microscopy 44
3.4.3 Diffuse Reflectance Ultraviolet-Visible Spectroscopy 44
3.4.4 X-ray Absorption Spectroscopy 45
3.4.5 Gas Chromatography/Mass Spectrometer 47
3.4.6 Gas Chromatography-Thermal Conductivity Detector 47
3.4.7 Fourier Transform Infrared Microscopy 47
4.1 Photocatalytic reduction of CO2 by Cu/ZnO nanocomposites 49
4.2 Photocatalytic reduction of CO2 by (Cu/ZnO)@C yolk-shell nanoreactors 68
4.3 Photocatalytic reduction of CO2 by (Cu/ZnO)@TiO2 nanoreactors 89
4.4 Exploratory study: Photocatalytic degradation of MB with Cu/ZnO nanocomposites 100

Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17-28.
Albo, J., Sáez, A., Solla-Gullón, J., Montiel, V., & Irabien, A. (2015). Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Applied Catalysis B: Environmental, 176-177, 709-717.
Arami, M., Limaee, N. Y., Mahmoodi, N. M., & Tabrizi, N. S. (2005). Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies. Journal of Colloid and Interface Science, 288(2), 371-376.
Arena, F., Italiano, G., Barbera, K., Bordiga, S., Bonura, G., Spadaro, L., & Frusteri, F. (2008). Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A: General, 350(1), 16-23.
Bayal, N., & Jeevanandam, P. (2012). Synthesis of CuO@ NiO core-shell nanoparticles by homogeneous precipitation method. Journal of Alloys and Compounds, 537, 232-241.
Bielawa, H., Kurtz, M., Genger, T., & Hinrichsen, O. (2001). Rapid Kinetic Measurements in Ammonia and Methanol Syntheses. Industrial & Engineering Chemistry Research, 40(13), 2793-2800.
Cai, P.-F., Su, C.-J., Chang, W.-T., Chang, F.-C., Peng, C.-Y., Sun, I.-W., Wei, Y.-L., Jou, C.-J., Wang, H. P. (2014). Capacitive deionization of seawater effected by nano Ag and Ag@ C on graphene. Marine pollution bulletin, 85(2), 733-737.
Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1–2), 33-177.
Celia, M. A., Bachu, S., Nordbotten, J. M., Gasda, S. E., & Dahle, H. K. (2004). Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models and data needs. Paper presented at the Proceedings of 7th International Conference on Greenhouse Gas Control Technologies.(GHGT-7).
Chen, J. S., Chen, C., Liu, J., Xu, R., Qiao, S. Z., & Lou, X. W. (2011). Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chemical Communications, 47(9), 2631-2633.
Chen, Y., Chen, H., Zhang, S., Chen, F., Zhang, L., Zhang, J., . . . Feng, J. (2011). Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Advanced Functional Materials, 21(2), 270-278.
Chinchen, G., Denny, P., Jennings, J., Spencer, M., & Waugh, K. (1988). Synthesis of methanol: part 1. Catalysts and kinetics. Applied Catalysis, 36, 1-65.
Chinchen, G. C., Denny, P. J., Parker, D. G., Spencer, M. S., & Whan, D. A. (1987). Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of14C-labelled reactants. Applied Catalysis, 30(2), 333-338.
Choi, H.-J., & Kang, M. (2007). Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded. International Journal of Hydrogen Energy, 32(16), 3841-3848.
Choi, J. H., Kim, H. S., Choi, J.-W., Hong, J. W., Kim, Y.-K., & Oh, B.-K. (2013). A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosensors and Bioelectronics, 49, 415-419.
Conway, W., Bruggink, S., Beyad, Y., Luo, W., Melián-Cabrera, I., Puxty, G., & Feron, P. (2015). CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes. Chemical Engineering Science, 126, 446-454.
Coteron, A., & Hayhurst, A. N. (1994). Kinetics of the synthesis of methanol from CO + H2 and CO + CO2 + H2 over copper-based amorphous catalysts. Chemical Engineering Science, 49(2), 209-221.
Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5–8), 53-229.
Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Marine Science, 1.
Fang, X., Liu, Z., Hsieh, M.-F., Chen, M., Liu, P., Chen, C., & Zheng, N. (2012). Hollow Mesoporous Aluminosilica Spheres with Perpendicular Pore Channels as Catalytic Nanoreactors. ACS Nano, 6(5), 4434-4444.
Fankhauser, S. (2013). Valuing climate change: the economics of the greenhouse: Routledge.
Fujimoto, K., & Shikada, T. (1987). Selective synthesis of C2-C5 hydrocarbons from carbon dioxide utilizing a hybrid catalyst composed of a methanol synthesis catalyst and zeolite. Applied Catalysis, 31(1), 13-23.
Fujishima, A., Hashimoto, K., & Watanabe, T. (1999). TiO2 photocatalysis: fundamentals and applications: BKC Incorporated.
Gibbins, J., & Chalmers, H. (2008). Carbon capture and storage. Energy Policy, 36(12), 4317-4322.
Grahn, H. T. (1999). Introduction to semiconductor physics: World Scientific.
Guan, G., Kida, T., & Yoshida, A. (2003). Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Applied Catalysis B: Environmental, 41(4), 387-396.
Guo, X., Liu, X., Xu, B., & Dou, T. (2009). Synthesis and characterization of carbon sphere-silica core–shell structure and hollow silica spheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345(1), 141-146.
Gupta, S. M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639-1657.
Habisreutinger, S. N., Schmidt‐Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408.
Han, H., & Bai, R. (2009). Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Industrial & Engineering Chemistry Research, 48(6), 2891-2898.
Hayat, K., Gondal, M. A., Khaled, M. M., Ahmed, S., & Shemsi, A. M. (2011). Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Applied Catalysis A: General, 393(1–2), 122-129.
Haynes, W. M. (2014). CRC handbook of chemistry and physics: CRC press.
Ho, M. T., Allinson, G. W., & Wiley, D. E. (2008). Reducing the cost of CO2 capture from flue gases using membrane technology. Industrial & Engineering Chemistry Research, 47(5), 1562-1568.
Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534-534.
Hong, C.-I., Kang, H.-Y., Wang, H. P., Lin, W.-K., Jeng, U. S., & Su, C.-H. (2011). Cu–ZnO@C nanoreactors studied by in situ synchrotron SAXS spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 184(3–6), 301-303.
Hoover, N. N., Auten, B. J., & Chandler, B. D. (2006). Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles. The Journal of Physical Chemistry B, 110(17), 8606-8612.
Hou, Z., Yokota, O., Tanaka, T., & Yashima, T. (2003). Investigation of CH4 reforming with CO2 on meso-porous Al2O3-supported Ni catalyst. Catalysis Letters, 89(1-2), 121-127.
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J.-M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31(2), 145-157.
Huijgen, W. J. J., & Comans, R. N. J. (2005). Mineral CO2 Sequestration by Steel Slag Carbonation. Environmental Science & Technology, 39(24), 9676-9682.
In, S. I., Vaughn, D. D., & Schaak, R. E. (2012). Hybrid CuO‐TiO2− xNx Hollow Nanocubes for Photocatalytic Conversion of CO2 into Methane under Solar Irradiation. Angewandte Chemie, 124(16), 3981-3984.
Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277, 637-638.
Inui, T., & Takeguchi, T. (1991). Effective conversion of carbon dioxide and hydrogen to hydrocarbons. Catalysis Today, 10(1), 95-106.
Jang, Y. J., Simer, C., & Ohm, T. (2006). Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue. Materials Research Bulletin, 41(1), 67-77.
Kang, H., Peng, C., Wang, H. P., Lin, W.-K., Sun, I.-W., & Chang, S.-G. (2015). Preparation of Ag nanospheres filled with Cu. Journal of Experimental Nanoscience, 10(12), 937-946.
Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J., & Ito, S. (2002). A Patterned TiO2 (Anatase)/TiO2 (Rutile) Bilayer‐Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity. Angewandte Chemie, 114(15), 2935-2937.
Kiesgen de_Richter, R., Ming, T., & Caillol, S. (2013). Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renewable and Sustainable Energy Reviews, 19, 82-106.
Ko, D., Siriwardane, R., & Biegler, L. T. (2003). Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration. Industrial & Engineering Chemistry Research, 42(2), 339-348.
Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49(1), 1-14.
Ku, Y., Lee, W.-H., & Wang, W.-Y. (2004). Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process. Journal of Molecular Catalysis A: Chemical, 212(1–2), 191-196.
Lea, D. W. (2015). Palaeoclimate: Climate sensitivity in a warmer world. Nature, 518(7537), 46-47.
Lee, J., Kim, S. M., & Lee, I. S. (2014). Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today, 9(5), 631-667.
Lee, J. F., Chern, W. S., Lee, M. D., & Dong, T. Y. (1992). Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium. The Canadian Journal of Chemical Engineering, 70(3), 511-515.
Li, G., Xiao, P., Webley, P., Zhang, J., Singh, R., & Marshall, M. (2008). Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 14(2-3), 415-422.
Li, P., Wei, Z., Wu, T., Peng, Q., & Li, Y. (2011). Au−ZnO Hybrid Nanopyramids and Their Photocatalytic Properties. Journal of the American Chemical Society, 133(15), 5660-5663.
Liang, Z., Marshall, M., & Chaffee, A. L. (2009). CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy & Fuels, 23(5), 2785-2789.
Liao, F., Huang, Y., Ge, J., Zheng, W., Tedsree, K., Collier, P., . . . Tsang, S. C. (2011). Morphology‐Dependent Interactions of ZnO with Cu Nanoparticles at the Materials’ Interface in Selective Hydrogenation of CO2 to CH3OH. Angewandte Chemie International Edition, 50(9), 2162-2165.
Linsebigler, A. L., Lu, G., & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 95(3), 735-758.
Liu, J., Qiao, S. Z., Chen, J. S., Lou, X. W., Xing, X., & Lu, G. Q. (2011). Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun (Camb), 47(47), 12578-12591.
Liu, J., Qiao, S. Z., Chen, J. S., Lou, X. W. D., Xing, X., & Lu, G. Q. M. (2011). Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 47(47), 12578-12591.
Liu, Y., Huang, B., Dai, Y., Zhang, X., Qin, X., Jiang, M., & Whangbo, M.-H. (2009). Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catalysis Communications, 11(3), 210-213.
Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., & Sun, Y. (2009). A short review of catalysis for CO2 conversion. Catalysis Today, 148(3–4), 221-231.
Mao, J., Peng, T., Zhang, X., Li, K., Ye, L., & Zan, L. (2013). Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catalysis Science & Technology, 3(5), 1253-1260.
Marinakos, S. M., Novak, J. P., Brousseau, L. C., House, A. B., Edeki, E. M., Feldhaus, J. C., & Feldheim, D. L. (1999). Gold Particles as Templates for the Synthesis of Hollow Polymer Capsules. Control of Capsule Dimensions and Guest Encapsulation. Journal of the American Chemical Society, 121(37), 8518-8522.
Martin, O., & Pérez-Ramírez, J. (2013). New and revisited insights into the promotion of methanol synthesis catalysts by CO2. Catalysis Science & Technology, 3(12), 3343-3352.
Millero, F. J. (1995). Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59(4), 661-677.
Mott, D., Galkowski, J., Wang, L., Luo, J., & Zhong, C.-J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23(10), 5740-5745.
Nagaveni, K., Sivalingam, G., Hegde, M., & Madras, G. (2004). Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environmental Science & Technology, 38(5), 1600-1604.
Narayanan, T., Shaijumon, M., Ajayan, P., & Anantharaman, M. (2010). Synthesis of high coercivity core–shell nanorods based on nickel and cobalt and their magnetic properties. Nanoscale research letters, 5(1), 164-168.
Niu, M., Huang, F., Cui, L., Huang, P., Yu, Y., & Wang, Y. (2010). Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/α-Fe2O3 Semiconductor Nanoheterostructures. ACS Nano, 4(2), 681-688.
Nowicka, A. M., Fau, M., Rapecki, T., & Donten, M. (2014). Polypyrrole-Au Nanoparticles Composite as Suitable Platform for DNA Biosensor with Electrochemical Impedance Spectroscopy Detection. Electrochimica Acta, 140, 65-71.
Olah, G. A. (2013). Towards oil independence through renewable methanol chemistry. Angewandte Chemie International Edition, 52(1), 104-107.
Omata, K., Watanabe, Y., Umegaki, T., Ishiguro, G., & Yamada, M. (2002). Low-pressure DME synthesis with Cu-based hybrid catalysts using temperature-gradient reactor. Fuel, 81(11), 1605-1609.
Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., S.-J. ChO, Morkoc, H. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4), 041301.
Özhava, D., Kılıçaslan, N. Z., & Özkar, S. (2015). PVP-stabilized nickel(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of hydrazine borane or ammonia borane. Applied Catalysis B: Environmental, 162, 573-582.
Park, J. C., Bang, J. U., Lee, J., Ko, C. H., & Song, H. (2010). Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability. J. Mater. Chem., 20(7), 1239-1246.
Ravel, B., & Newville, M. (2005). ATHENA and ARTEMIS: interactive graphical data analysis using IFEFFIT. Physica Scripta, 2005(T115), 1007.
Ren, C., Yang, B., Wu, M., Xu, J., Fu, Z., lv, Y., . . . Zhu, C. (2010). Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. Journal of Hazardous Materials, 182(1–3), 123-129.
Rezaei, M., Alavi, S. M., Sahebdelfar, S., Xinmei, L., Qian, L., & Yan, Z.-F. (2007). CO2−CH4 Reforming over Nickel Catalysts Supported on Mesoporous Nanocrystalline Zirconia with High Surface Area. Energy & Fuels, 21(2), 581-589.
Riedel, T., Claeys, M., Schulz, H., Schaub, G., Nam, S.-S., Jun, K.-W., . . . Lee, K.-W. (1999). Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Applied Catalysis A: General, 186(1–2), 201-213.
Rostrupnielsen, J. R., & Hansen, J. H. B. (1993). CO2-Reforming of Methane over Transition Metals. Journal of Catalysis, 144(1), 38-49.
Roy, S. C., Varghese, O. K., Paulose, M., & Grimes, C. A. (2010). Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 4(3), 1259-1278.
Saeidi, S., Amin, N. A. S., & Rahimpour, M. R. (2014). Hydrogenation of CO2 to value-added products—A review and potential future developments. Journal of CO2 Utilization, 5, 66-81.
Senapati, S., Srivastava, S. K., & Singh, S. B. (2012). Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure. Nanoscale, 4(20), 6604-6612.
Shen, H., Xu, M., Yan, X., Yao, J., Han, S., & Gu, R. (2010). Synthesis and surface enhanced optical properties of multibranched spindle particles and core–shell structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353(2), 204-209.
Shen, W.-J., Ichihashi, Y., & Matsumura, Y. (2002). A comparative study of palladium and copper catalysts in methanol synthesis. Catalysis Letters, 79(1-4), 125-127.
Shukla, P., Fatimah, I., Wang, S., Ang, H. M., & Tadé, M. O. (2010). Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater. Catalysis Today, 157(1–4), 410-414.
Som, T., & Karmakar, B. (2009). Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses. Nano research, 2(8), 607-616.
Srinivas, B., Shubhamangala, B., Lalitha, K., Anil Kumar Reddy, P., Durga Kumari, V., Subrahmanyam, M., & De, B. R. (2011). Photocatalytic Reduction of CO2 over Cu‐TiO2/Molecular Sieve 5A Composite. Photochemistry and photobiology, 87(5), 995-1001.
Studenikin, S., Golego, N., & Cocivera, M. (1998). Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. Journal of applied physics, 84(4), 2287-2294.
Tanaka, K., Capule, M. F., & Hisanaga, T. (1991). Effect of crystallinity of TiO2 on its photocatalytic action. Chemical Physics Letters, 187(1), 73-76.
Tang, C., Hou, W., Liu, E., Hu, X., & Fan, J. (2014). CeF3/TiO2 composite as a novel visible-light-driven photocatalyst based on upconversion emission and its application for photocatalytic reduction of CO2. Journal of Luminescence, 154, 305-309.
Teramura, K., Tanaka, T., Ishikawa, H., Kohno, Y., & Funabiki, T. (2004). Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO. The Journal of Physical Chemistry B, 108(1), 346-354.
Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., & Ye, J. (2012). Nano‐photocatalytic materials: possibilities and challenges. Advanced Materials, 24(2), 229-251.
Uner, D., & Oymak, M. M. (2012). On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catalysis Today, 181(1), 82-88.
Varaprasad, K., Raghavendra, G. M., Jayaramudu, T., & Seo, J. (2016). Nano zinc oxide–sodium alginate antibacterial cellulose fibres. Carbohydrate Polymers, 135, 349-355.
Varghese, O. K., Paulose, M., LaTempa, T. J., & Grimes, C. A. (2009). High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano letters, 9(2), 731-737.
Venna, S. R., & Carreon, M. A. (2009). Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. Journal of the American Chemical Society, 132(1), 76-78.
West, A. R. (1999). Basic solid state chemistry: John Wiley & Sons Inc.
Xu, J., Pan, Q., & Tian, Z. (2000). Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical, 66(1), 277-279.
Yamashita, H., Nishiguchi, H., Kamada, N., Anpo, M., Teraoka, Y., Hatano, H., . . . Sclafani, A. (1994). Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Research on Chemical Intermediates, 20(8), 815-823.
Yang, C., Ma, Z., Zhao, N., Wei, W., Hu, T., & Sun, Y. (2006). Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst. Catalysis Today, 115(1), 222-227.
Yang, T. C., Chang, F. C., Wang, H. P., Wei, Y. L., & Jou, C. J. (2014). Photocatalytic splitting of seawater effected by (Ni–ZnO)@C nanoreactors. Marine pollution bulletin, 85(2), 696-699.
Yang, X., Xin, W., Yin, X., & Shao, X. (2016). Enhancement of photocatalytic activity in reducing CO2 over CdS/g-C3N4 composite catalysts under UV light irradiation. Chemical Physics Letters, 651, 127-132.
Yave, W., Car, A., Funari, S. S., Nunes, S. P., & Peinemann, K.-V. (2009). CO2-philic polymer membrane with extremely high separation performance. Macromolecules, 43(1), 326-333.
Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., & Alivisatos, A. P. (2004). Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 304(5671), 711-714.
Yoneyama, H. (1997). Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catalysis Today, 39(3), 169-175.
Yu, J., & Yu, X. (2008). Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environmental Science & Technology, 42(13), 4902-4907.
Zaera, F. (2013). Nanostructured materials for applications in heterogeneous catalysis. Chemical Society Reviews, 42(7), 2746-2762.
Zeng, H., Liu, P., Cai, W., Yang, S., & Xu, X. (2008). Controllable Pt/ZnO Porous Nanocages with Improved Photocatalytic Activity. The Journal of Physical Chemistry C, 112(49), 19620-19624.
Zhang, Q., Gao, L., & Guo, J. (2000). Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl 4 hydrolysis. Applied Catalysis B: Environmental, 26(3), 207-215.
Zhang, Y., Jacobs, G., Sparks, D. E., Dry, M. E., & Davis, B. H. (2002). CO and CO2 hydrogenation study on supported cobalt Fischer–Tropsch synthesis catalysts. Catalysis Today, 71(3–4), 411-418.
Zheng, Y., Zheng, L., Zhan, Y., Lin, X., Zheng, Q., & Wei, K. (2007). Ag/ZnO Heterostructure Nanocrystals:  Synthesis, Characterization, and Photocatalysis. Inorganic Chemistry, 46(17), 6980-6986.
Zhong, J., Cao, C., Liu, Y., Li, Y., & Khan, W. S. (2010). Hollow core–shell η-Fe2 O3 microspheres with excellent lithium-storage and gas-sensing properties. Chemical Communications, 46(22), 3869-3871.
Zhu, C.-L., Zhang, M.-L., Qiao, Y.-J., Xiao, G., Zhang, F., & Chen, Y.-J. (2010). Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. The Journal of Physical Chemistry C, 114(39), 16229-16235.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top