跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:上官翰琦
研究生(外文):Han-QiShangguan
論文名稱:金屬氧化物電極界面層於有機鉛碘鈣鈦礦太陽能電池之研究
論文名稱(外文):Metal Oxide Electrode-Interlayer in Organolead Iodide Perovskite-Based Solar Cells
指導教授:郭宗枋
指導教授(外文):Tzung-Fang Guo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:125
中文關鍵詞:電極界面層金屬氧化物平面異質接面鈣鈦礦太陽能電池氧化鎳氧化鋅
外文關鍵詞:organometal halide perovskitemetal-oxideplanar heterojunctionnickel oxidezinc oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究鈣鈦礦太陽能電池中的電極界面層,我們致力於將金屬氧化物應用於本實驗室平面異質接面鈣鈦礦太陽能電池(ITO/PEDOT:PSS/CH3NH3PbI3/C60/BCP/Al)。我們選擇氧化鎳(NiOx)替換PEDOT:PSS作為電洞傳輸層,由於和鈣鈦礦能階匹配度高,開路電壓從0.90 V提高到1.01 V,我們證實氧化鎳在通氧氛圍下能提高薄膜品質,進而使元件效率提高到14 %。我們選擇氧化鋅(ZnO)替換富勒烯(C60)作為電子傳輸層,並使用三種製程得到氧化鋅薄膜。使用熱蒸鍍法製備的氧化鋅薄膜得到的鈣鈦礦元件效率達到2.63 %,若加入C60作為阻擋層,元件光電轉換效率提高到4.55 %。此外,使用濺鍍法製備氧化鋅能得到的品質優良的薄膜,但在濺鍍過程中會對鈣鈦礦薄膜造成破壞。在加入阻擋層後,我們得到效率為1.14 %的鈣鈦礦元件。我們認為在加入阻擋層後可緩衝濺鍍過程中對鈣鈦礦薄膜的破壞。
In the past five years, organometal halide perovskite were identified as promising absorbers for solar cells. Although the power conversion efficiencies of perovskite solar cells have rapidly risen to over 20%, there is much room for further improvenment in efficiencies and stability through development of novel materials. Here, we use matel oxide materials, NiOx and ZnO, to substitute PEDOT:PSS and C60 as the hole transport layer and electron transport layer in regular structure planar heterojunction perovskite solar cells. Replacing PEDOT:PSS with NiOx, the efficiencies of devices raised up to over 14%. Replacing C60 with ZnO which was deposited by thermal evaporator, the efficiencies of devices came to be 2.63%. After introducing C60 as a blocking layer, the efficiencies of devices raised up to over 4.55%. We deposited the ZnO films by sputtering and introduced the LiF as the blocking layer because sputtering ZnO film destroyed the perovskite films. We confirmed the blocking layer protected the perovskite layer.
摘要 I
Extended Abstract II
致謝 XIII
目錄 XV
圖目錄 XIX
表目錄 XXIV
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池的發展歷史和分類 2
1-2-1 太陽能電池的發展歷史 2
1-2-2 太陽能電池的分類 2
1-3 鈣鈦礦太陽能電池 6
1-3-1 鈣鈦礦太陽能電池的簡介 6
1-3-2 鈣鈦礦太陽能電池的發展 7
1-3-3 鈣鈦礦太陽能電池的結構 8
1-4 研究動機和論文大綱 10
1-4-1 研究動機 10
1-4-2 論文大綱 11
第二章 太陽能電池工作原理 13
2-1 太陽能電池的工作原理 13
2-1-1 無機太陽能電池工作原理 13
2-1-2 有機太陽能電池工作原理 17
2-2 電極界面層於鈣鈦礦太陽能電池中的應用 20
2-2-1 電極界面層的電荷傳輸機制 20
2-2-2 電極界面層於鈣鈦礦太陽能電池的作用 21
2-2-3 電子傳輸材料在鈣鈦礦元件中的應用 22
2-2-4 電洞傳輸層材料在鈣鈦礦元件中的應用 29
2-3 鈣鈦礦薄膜的製備方法 32
2-3-1 鈣鈦礦薄膜生長原理 32
2-3-2 溶液法:單步驟/兩步旋轉塗佈法(Single-step /Two-step spin-coating process) 34
2-3-3 共蒸鍍法(Co-evaporation) 37
2-3-4 氣相輔助溶液製程(Vapor-assisted solution process) 38
2-3-5 溶劑/氣相輔助法(Solvent/Gas engineering) 40
2-4 鈣鈦礦太陽能電池的劣勢 43
2-4-1 穩定性 43
2-4-2 毒性鉛 46
2-4-3 電性遲滯 46
2-5 太陽能電池的量測技術 48
2-5-1 標準量測光源定義 48
2-5-2 衡量太陽能電池優良的參數 50
2-5-3 太陽能電池入射單色光光電轉換效率 53
2-6 本章結論 54
第三章 鈣鈦礦元件製備實驗部分 55
3-1鈣鈦礦平面反置異質接合太陽能電池基本架構 55
3-2 鈣鈦礦太陽能電池的製備過程 57
3-2-1 ITO基板的蝕刻準備 57
3-2-2 ITO基板的清洗 59
3-2-3 電洞傳輸層的製備 60
3-2-4 鈣鈦礦吸收層的製備 63
3-2-5 電子傳輸層和阻擋層的製備 65
3-2-6 陰極的製備 71
3-2-7 鈣鈦礦太陽能元件的封裝 71
3-3 元件光電特性的量測 73
3-3-1 I-V量測系統 73
3-3-2 IPCE量測系統 76
3-3-3 紫外-可見光(UV-Vis)吸收光譜儀 78
3-4 本章結論 79
第四章 金屬氧化物電極界面層於鈣鈦礦太陽能電池之研究 80
4-1 氧化鎳作為電洞傳輸層於鈣鈦礦元件之影響 80
4-1-1 氧化鎳作為電洞傳輸層之探討 80
4-1-2 不同氧化鎳薄膜製程下鈣鈦礦元件電性表現 81
4-1-3 不同氧化鎳薄膜製程下鈣鈦礦薄膜結晶程度分析 85
4-1-4不同氧化鎳薄膜製程下鈣鈦礦薄膜紫外-可見光吸收分析 86
4-2氧化鋅作為電洞傳輸層於鈣鈦礦元件之影響 88
4-2-1 氧化鋅作為電子傳輸層之探討 88
4-2-2不同氧化鋅薄膜製程下可見光-紫外吸收分析 89
4-2-3 不同氧化鋅製程下鈣鈦礦元件電性分析 90
4-2-4 不同製程的氧化鋅薄膜形態分析 93
4-3 加入阻擋層後,不同的氧化鋅製程方式對鈣鈦礦元件之影響 98
4-3-1 加入阻擋層後,不同的氧化鋅製程方式製備的鈣鈦礦元件電性分析 98
4-3-2加入阻擋層後,熱蒸鍍法和濺鍍法製備氧化鋅薄膜之薄膜形態分析 102
4-3-3 氟化鋰阻擋層對濺鍍法製備氧化鋅薄膜於鈣鈦礦結晶程度影響 104
4-4 非甲基胺鉛碘太陽能電池元件的探索 106
4-4-1銫鉛碘鈣鈦礦薄膜紫外-可見光吸收分析 106
4-4-2 以碘化銫作為前驅物的鈣鈦礦元件電性分析 108
4-5 本章結論 110
第五章 總結和未來工作 112
5-1 總結 112
5-2 未來工作和展望 113
5-2-1碘化鉛阻擋層對濺鍍法製備氧化鋅薄膜於鈣鈦礦元件之影響 113
參考文獻 117

[1]J .You, Y. M. Yang, Z. Hong, T. B. Song, L. Meng, Y. Liu, Y. Yang. “Moisture assisted perovskite film growth for high performance solar cells, Appl. phys. Lett., 105, 183902 (2014).
[2]Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, J. Huang. “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci., 7, 2619 (2014).
[3]M. H. Kumar, N. Yantara, S. Dharani, M. Gractzel, S. Mhaisalkar, P. P. Boix, N. Mathews. “Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells, Chem. Commun., 49, 11089 (2013).
[4]C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. M. Espallargas, A. Garcia, P. Reinecke, H. J. Bolink. “Flexible high efficiency perovskite solar cells, Energy Environ. Sci., 7, 994 (2014).
[5]P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, H. J. Snaith. “organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat. Commun., 4 (2013).
[6]T. Saga. “Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater., 2, 96 (2010).
[7]B. O’regan, M. Grfitzeli. “A low-cost, high-efficiency solar cell based on dye-sensitized, Nature, 353, 737 (1991).
[8]H. S. Kim, S. H. Im, N. G. Park. “Organolead halide perovskite: new horizons in solar cell research, J. Phys. Chem. C, 118, 5615 (2014).
[9]S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, H. J. Snaith. “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341 (2013).
[10]W. J. Yin, T. Shi, Y. Yan. “Unusual defect physics in CH3NH3PbI3 perovskite solar ceMll absorber, Appl. phys. Lett., 104, 063903(2014).
[11]J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park. “6.5 % efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3, 4088 (2011).
[12]K. Chondroudis, D. B. Mitzi, “Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers, Chem. Mater., 11, 3028 (1999).
[13]C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,Science, 286, 945 (1999).
[14]A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050 (2009).
[15]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith. “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643(2012).
[16]L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. Grätzel. “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, J. Am. Chem. Soc., 134, 17396 (2012).
[17]J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel. “Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316(2013).
[18]M. Liu, M. B. Johnston, H. J. Snaith. “Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395 (2013).
[19]H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Y. Yang. “Interface engineering of highly efficient perovskite solar cells, Science, 345, 542(2014).
[20]J. A. Christians, R. C. M. Fung, P. V. Kamat, “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide, J. Am. Chem. Soc, 136, 758 (2014).
[21]W. Li, H. Dong, L. Wang, N. Li, X. Guo, J. Li, Y. Qiu,“Motmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination, J. Mater. Chem. A, 2, 13587 (2014).
[22]J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater., 25, 3727 (2013).
[23]M. Jørgensen, K. Norrman, F. C. Krebs, “Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells, 92, 686 (2008).
[24]J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, Y. J. Hsu. “Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells, Adv. Mater., 26, 4107 (2014).
[25]J. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Y. Liu, Y. Yang. “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol., 11, 75 (2016).
[26]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 258, 1474 (1992).
[27]W. D. Gill. “Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole, J. Appl. Phys., 43, 5033 (1972).
[28]C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz. “High charge carrier mobilities and lifetimes in organolead trihalide perovskites, Adv. Mater., 26, 1584 (2014).
[29]S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, H. J. Snaith. “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341 (2013).
[30]G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, T. C. Sum. “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, 344 (2013).
[31]W. A. Laban, L. Etgar. “Depleted hole conductor-free lead halide iodide heterojunction solar cells, Energy Environ. Sci., 6, 3249 (2013).
[32]S. Aharon, S. Gamliel, B. El Cohen, L. Etgar. “Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells, Phys. Chem. Chem. Phys., 16, 10512 (2014).
[33]J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, M. Grätzel. “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics, 7, 486 (2013).
[34]G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith. “Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells, Adv. Funct. Mater., 24, 151(2014).
[35]K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith. “Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency, Energy Environ. Sci., 7, 1142 (2014).
[36]B. Conings, L. Baeten, T. Jacobs, R. Dera, J. D’Haen, J. Manca, H. G. Boyen. “An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells, APL Mater., 2, 081505 (2014).
[37]P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, H. J. Snaith. “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat. Commun., 4 (2013).
[38]Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao. “ZnO Nanostructures for Dye‐Sensitized Solar Cells, Adv. Mater., 21, 4087 (2009).
[39]N. P. Ariyanto, H. Abdullah, J. Syarif, B. Yuliarto, S. Shaari. “Fabrication of zinc oxide-based dye-sensitized solar cell by chemical bath deposition, Funct. Mater. Lett., 3, 303 (2010).
[40]A. S. Goncalves, M. S. Goes, F. Fabregat-Santiago, T. Moehl, M. R. Davolos, J. Bisquert, P. R. Bueno. “Doping saturation in dye-sensitized solar cells based on ZnO:Ga nanostructured photoanodes, Electrochim. Acta, 56, 6503 (2011).
[41]D. Y. Son, J. H. Im, H. S. Kim, N. G. Park. “11 % efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system, J. Phys. Chem. C, 118, 16567 (2014).
[42]D. D. Sarma, E. V. Sampathkumaran, S. Ray, R. Nagarajan, S. Majumdar, A. Kumar, T. G. Row. “Magnetoresistance in ordered and disordered double perovskite oxide, Sr2FeMoO6, Solid State Commun., 114, 465 (2000).
[43]D. Liu, T. L. Kelly. “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat. photonics, 8, 133 (2014).
[44]D. Bi , J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. Johansson, A. Hagfeldt. “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures, RSC Adv., 3, 18762 (2013).
[45]H. Zheng, Y. Tachibana, K. Kalantar-zadeh. “Dye-sensitized solar cells based on WO3, Langmuir, 26, 19148 (2010).
[46]K. Mahmood, B. S. Swain, A. Amassian. “Double-layered ZnO nanostructures for efficient perovskite solar cells, Nanoscale, 6, 14674 (2014).
[47]A. L. Jackson, S. R. Bartz, J. Schelter, S. V. Kobayashi, J. Burchard, M. Mao, P. S. Linsley. “Expression profiling reveals off-target gene regulation by RNAi, Nat. biotechnology, 21, 635 (2003).
[48]A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Grätzel. “A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability, Science, 345, 295 (2014).
[49]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith. “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643 (2012).
[50]G. Hodes. “Perovskite-based solar cells, Science, 342, 317 (2013).
[51]Y. S. Kwon, J. Lim, H. J. Yun, Y. H. Kim, T. Park. “A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite, Energy Environ. Sci., 7, 1454 (2014).
[52]T. M. Koh, S. Dharani, H. Li, R. R. Prabhakar, N. Mathews, A. C. Grimsdale, S. G. Mhaisalkar. “Cobalt dopant with deep redox potential for organometal halide hybrid solar cells. ChemSusChem, 7, 1909 (2014).
[53]K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. G. Diau, C. H. Tsai, T. F. Guo. “p-Type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Re., 4 (2014).
[54]N. Kaiser, “Review of the fundamentals of thin-film growth, Appl. Opt., 41, 3053 (2002).
[55]C. V. Thompson, “Solid-state dewetting of thin films, Ann. Rev. Mater. Res., 42, 399 (2012).
[56]T. Supasai, N. Rujisamphen, K. Ullrich, A. Chemseddine, Th. Dittrich,“Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers, Appl. Phys. Lett., 103, 183906 (2013).
[57]Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang. “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci., 7, 2359 (2014).
[58]J. H. Im, H. S. Kim, N. G. Park. “Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3, APL Mater., 2, 081510 (2014).
[59]H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao. “The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx Perovskite, Adv. Funct. Mater., 24, 7102 (2014).
[60]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok. “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater., 13, 897 (2014).
[61]Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith. “Electro-optics of perovskite solar cells, Nat. Photonics, 9, 106 (2015).
[62]Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Yang. “Planar heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc., 136, 622 (2013).
[63]J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, S. I. Seok,“Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells, Energy Environ. Sci., 7, 2642 (2014).
[64]F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A. G. Weale, J. Etheridge, C. R. McNeill, R. A. Caruso, U. Bach, L. Spiccia, Y.-B. Cheng,“Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells, Nano Energy, 10, 10 (2014).
[65]Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu, N. P. Padture,“Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells, J. Mater. Chem. A, 3, 8178 (2015).
[66]G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu. “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells, J. Mater. Chem. A, 2, 705 (2014).
[67]V. D’Innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, H. J. Snaith, A. Petrozza. “Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun., 5 (2014).
[68]T. Supasai, N. Rujisamphen, K. Ullrich, A. Chemseddine, Th. Dittrich,“Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers, Appl. Phys. Lett., 103, 183906 (2013).
[69]W. Li, J. Fan, J. Li, Y. Mai, L. Wang. “Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17 %, J. Am. Chem. Soc., 137, 10399 (2015).
[70]S. Ito, S. Tanaka, K. Manabe, H. Nishino,“Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells,J. Phys. Chem. C, 118, 16995 (2014).
[71]N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, M. B. Johnston, A. M. Petrozza, L. M. Herz, H. J. Snaith,“Lead-free organic-inorganic tin halide perovskite for photovoltaic applications, Energy Environ. Sci., 7, 3061 (2014).
[72]F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis,“Lead-free solid-state organic-inorganic halide perovskite solar cells, Nat. Photonics, 8, 489 (2014).
[73]C. S. Huang, C. X. Yan, G. L. Cui, C. H. Liu, S. P. Pang, H. X Hsu, “Germanium-containing perovskite materials and therir application in solar cells, Chinese Pat. Appl. CN 201410173750 (2014).
[74]Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang , L. Han. “Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition, Energy Environ. Sci., 7, 2934 (2014).
[75]S. D. Stranks, H. J. Snaith. “Metal-halide perovskites for photovoltaic and light-emitting devices, Nat. Nanotechnol., 10, 391 (2015).
[76]J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im. “Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1 % power conversion efficiency, Energy Environ. Sci., 8, 1602 (2015).
[77]Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, J. Huang. “Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater., 14, 193 (2015).
[78]Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang. “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Commun., 5(2014).
[79]V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “Accurate measurement and characterization of organic solar cells, Adv. Funct. Mater., 16, 2016 (2006).
[80]Z. Gui, J. Liu, Z. Wang, L. Song, Y. Hu, W. Fan, “From muticomponent precursor to nanoparticle nanoribbons of ZnO, J. Mater. Chem. B, 109, 1113 (2005).
[81]W. C. Lai, K. W. Lin, T. F. Guo, P. Chen, Y. T. Wang. “Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer, Appl. phys. Lett., 107, 253301 (2015).
[82]T. S. Ripolles, K. Nishinaka, Y. Ogomi, Y. Miyata, S. Hayase. “Efficiency enhancement by changing perovskite crystal phase and adding a charge extraction interlayer in organic amine free-perovskite solar cells based on cesium, Sol. Energy Mater. Sol. Cells, 144, 532 (2016).
[83]Y. Lei, L. Gu, H. W. He, Z. Jia, X. Yang, H. Jia, Z. Zheng. “Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture, J. Mater. Chem. A, 4, 5474 (2016).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊