(3.238.235.155) 您好!臺灣時間:2021/05/16 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳明璟
研究生(外文):Ming-JingWu
論文名稱:奈米天線、矽波導與光纖之整合
論文名稱(外文):Integration of Nano-antennas, Silicon Waveguides, and an Optical Fiber
指導教授:陳宣燁
指導教授(外文):Shiuan-Yeh Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:110
中文關鍵詞:奈米天線波導微影近紅外光光纖
外文關鍵詞:Nano-antennasilicon waveguidelithographynear infraredoptical fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在微波領域中,天線扮演的角色是將電能轉換成微波後無定向或朝著特定方向將訊號發射出去,而在奈米尺度下的天線同樣能將接收的光能量有方向性地發射出去,且由於金屬奈米天線具有區域性表面電漿共振(Localized surface plasmon resonance, LSPR)的現象,使得它若身邊帶著如量子點或分子等能夠與天線進行強耦合的量子發射體,即可將量子點的訊號增強後輸出甚至增強後以特定方向輸出。此外,金屬奈米天線還具有表面增強拉曼散射(Surface enhanced Raman scattering, SERS)與對環境折射率變化敏感的特性,因此也能夠在分子偵測的領域有所應用。
然而前述的奈米級天線都是獨立的,因此為了良好地控制天線,本研究以波導將光纖(巨觀)系統與奈米天線(微觀)整合在一起,故以絕緣層覆矽基板(Silicon on insulator, SOI)配合微影、蝕刻與薄膜沉積等製程來製作樣品,而樣品上包含單模脊型波導與設計過共振波長的奈米天線,並利用光纖將波長1530 nm ~ 1620 nm的不同線偏振光耦合進入波導中,產生特定偏振方向的光在波導傳輸,並利用此光激發天線產生不同的共振響應,最後利用近紅外光攝影機來收取天線散射強度以進行分析。
本論文中敘述了許多製程上遇到的問題與解決辦法,對於還能再優化改善的製程也有做改善的方法討論,並記錄了天線在不同的偏振與波長下的響應強度變化趨勢,可知天線會因為激發的偏振態改變而發生強度響應的變化,不過或許是基板產生了些微的感應偶極的影響,天線的共振狀態與最初預期設計的有些不同,而這些製程與量測結論對於後續研究朝應用目標前進時可能會有所幫助。

Antennas are important elements of wireless information transmission technologies. In radio engineering, antennas refer to devices converting electric currents to radio waves and, vice versa. However, nano-antenna has more advantageous characteristic, such as localized surface plasmon resonance, surface enhancement of light and high sensitivity to the changing of refractive index of surrounding. These advantages bring it to have the potential applications in optical computing and molecule sensing. We built up single-mode rib waveguides and nano-antennas on the silicon-on-insulator (SOI) substrate by using semiconductor manufacturing process. The resonance wavelength of nano-antennas was designed to be at 1550 nm based on the literature. The fabrication results, challenges and corresponding solutions were showed in this thesis. In optical measurement, nano-antenna was excited by different wavelengths and polarizations of different guiding modes of waveguide. The response of the antenna was also showed and discussed in this thesis. It could be seen that the antenna was reacting with different excitation but the resonance peak was different from our expectations. It may be due to the induced charge of substrate.
口試證明 I
中文摘要 II
Abstract III
誌謝 X
目錄 XI
圖目錄 XIV
表目錄 XXI
第一章 序論 1
1.1 前言 1
1.2 相關研究 2
1.3 本論文要解決的問題 3
第二章 研究方法 4
2.1 元件工作原理介紹 4
2.1.1 金屬表面電漿共振現象 4
2.1.2 短天線理論 5
2.2 設備器材與其原理技術介紹 7
2.2.1 電子束微影系統 (ELIONIX INC./ELS-7500EX) 7
2.2.2 光罩對準儀 (EVGroup / EVG620) 17
2.2.3 感應耦合電漿蝕刻機 (ELIONIX INC./EIS-700) 19
2.2.4 蒸鍍機 24
2.2.5 掃描式電子顯微鏡 (JEOL / JSM-6340F) 31
2.2.6 光纖偏振控制器 32
2.2.7 光纖衰減器 (Thorlabs/VOA50-APC) 35
2.2.8 特殊器材介紹 36
2.3 製程技術介紹 43
2.3.1 晶圓清潔法 43
2.3.2 光阻的塗佈與烘烤製程介紹 45
2.3.3 Lift-off製程 48
2.4 樣品設計與製備 50
2.5 光學量測系統架構 59
第三章 實驗結果與討論 62
3.1 各階段製程結果與討論 62
3.1.1 清洗製程 62
3.1.2 第一階段波導製程 - 黃光微影 64
3.1.3 第一階段波導製程 - ICP蝕刻 67
3.1.4 第二階段波導製程 - 黃光微影 71
3.1.5 第二階段波導製程 – ICP蝕刻 72
3.1.6 天線結構定義 73
3.1.7 鍍膜 77
3.1.8 舉離法 77
3.1.9 後處理 79
3.2 光學量測結果 82
3.2.1 量測系統光源於不同波長下的輸出強度分析 82
3.2.2 量測系統光源於不同波長下的輸出偏振分析 83
3.2.3 量測系統光源於不同波長下的雜訊與頻寬分析 84
3.2.4 天線響應分析 86
3.2.5 波導光損耗分析 90
第四章 討論 91
4.1 對量測天線散射響應的改進方向 91
4.1.1 利用模擬軟體進行散射模擬 91
4.1.2 改進光學量測系統 92
4.2 改進製程 92
4.2.1 修改光罩與修改微影參數 92
4.2.2 調整ICP蝕刻流程參數 93
4.2.3 改用電子束微影技術 93
4.2.4 改變設計結構 94
4.2.5 蝕刻波導粗糙側壁和去除光阻厚度不均處 94
第五章 補充 - 模擬結果 95
5.1 單模波導截面設計與偏振確認 95
5.2 錐形波導結構設計與損耗分析 99
5.3 彎曲波導的損耗分析 102
參考文獻 103
附錄A 精密五軸平移台與精密電動平移台之廠牌型號 109
附錄B 高能電子束擊中樣品時產生的各種產物 110


[01]Atwater, Harry A., and Albert Polman. Plasmonics for improved photovoltaic devices. Nature materials 9.3 (2010): 205-213.
[02]Zhang, Nan, et al. High sensitivity molecule detection by plasmonic nanoantennas with selective binding at electromagnetic hotspots. Nanoscale6.3 (2014): 1416-1422.
[03]Lee, Seulki, et al. A Near‐Infrared‐Fluorescence‐Quenched Gold‐Nanoparticle Imaging Probe for In Vivo Drug Screening and Protease Activity Determination. Angewandte Chemie 120.15 (2008): 2846-2849.
[04]Greffet, Jean-Jacques. Nanoantennas for light emission. Science 308.5728 (2005): 1561-1563.
[05]Kottmann, Jörg P., et al. Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B 64.23 (2001): 235402.
[06]Mühlschlegel, P., et al. Resonant optical antennas. science 308.5728 (2005): 1607-1609.
[07]Kollmann, Heiko, et al. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. Nano letters 14.8 (2014): 4778-4784.
[08]Novotny, Lukas, and Niek Van Hulst. Antennas for light. Nature Photonics 5.2 (2011): 83-90.
[09]Kosako, Terukazu, Yutaka Kadoya, and Holger F. Hofmann. Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photonics 4.5 (2010): 312-315.
[10]Ghenuche, Petru, et al. Spectroscopic mode mapping of resonant plasmon nanoantennas. Physical review letters 101.11 (2008): 116805.
[11]Schuck, P. J., et al. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Physical review letters 94.1 (2005): 017402.
[12]Dorfmuller, Jens, et al. Near-field dynamics of optical Yagi-Uda nanoantennas. Nano letters 11.7 (2011): 2819-2824.
[13]Kriesch, Arian, et al. Functional plasmonic nanocircuits with low insertion and propagation losses. Nano letters 13.9 (2013): 4539-4545.
[14]Berkovitch, Nikolai, and Meir Orenstein. Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts. Nano letters 11.5 (2011): 2079-2082.
[15]Halpern, Aaron R., and Robert M. Corn. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. Acs Nano 7.2 (2013): 1755-1762.
[16]Dregely, Daniel, et al. 3D optical Yagi-Uda nanoantenna array. Nature communications 2 (2011): 267.
[17]Su, Zhan, et al. Four-port integrated polarizing beam splitter. Optics letters39.4 (2014): 965-968.
[18]Sun, Chen, et al. Single-chip microprocessor that communicates directly using light. Nature 528.7583 (2015): 534-538.
[19]Lin, Pin-Tso, et al. Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers. Lab on a Chip 14.24 (2014): 4647-4652.
[20]Lee, Ho W., et al. Nanoscale conducting oxide PlasMOStor. Nano letters14.11 (2014): 6463-6468.
[21]Lin, Keng-Te, et al. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths.Nature communications 5 (2014).
[22]Boltasseva, Alexandra. Plasmonic components fabrication via nanoimprint.Journal of Optics A: Pure and Applied Optics 11.11 (2009): 114001.
[23]Sparacin, Daniel K., Steven J. Spector, and Lionel C. Kimerling. Silicon waveguide sidewall smoothing by wet chemical oxidation. Journal of lightwave technology 23.8 (2005): 2455.
[24]Schnarrenberger, Martin, et al. Facet preparation of SOI waveguides by etching and cleaving compared to dicing and polishing. Group IV Photonics, 2004. First IEEE International Conference on. IEEE, 2004.
[25]Gao, F., et al. Reduction of sidewall roughness in silicon-on-insulator rib waveguides. Applied surface science 252.14 (2006): 5071-5075.
[26]Lin, Pao Tai, et al. Si-CMOS compatible materials and devices for mid-IR microphotonics. Optical Materials Express 3.9 (2013): 1474-1487.
[27]Collins, Matthew J., et al. Integrated spatial multiplexing of heralded single-photon sources. Nature communications 4 (2013).
[28]Soref, Richard A., Joachim Schmidtchen, and Klaus Petermann. Large single-mode rib waveguides in GeSi-Si and Si-on-SiO 2. IEEE Journal of Quantum Electronics 27.8 (1991): 1971-1974.
[29]Knight, Mark W., et al. Photodetection with active optical antennas. Science332.6030 (2011): 702-704.
[30]Lefevre, H. C. Single-mode fibre fractional wave devices and polarisation controllers. Electronics Letters 16 (1980): 778-780.
[31]Bryant, Garnett W., F. Javier García de Abajo, and Javier Aizpurua. Mapping the plasmon resonances of metallic nanoantennas. Nano letters 8.2 (2008): 631-636.
[32]Novotny, Lukas. Effective wavelength scaling for optical antennas. Physical Review Letters 98.26 (2007): 266802.
[33]Pogossian, Souren P., Lili Vescan, and Adrian Vonsovici. The single-mode condition for semiconductor rib waveguides with large cross section. Journal of Lightwave Technology 16.10 (1998): 1851-1853.
[34]Ulrich, Rashleigh, S. C. Rashleigh, and W. Eickhoff. Bending-induced birefringence in single-mode fibers. Optics letters 5.6 (1980): 273-275.
[35]國立交通大學奈米中心,濕式清洗蝕刻台操作講義,2011/05/10
[36]施錫龍,微製程概論,國家奈米元件實驗室,2003/12/15
[37]國家奈米元件實驗室,濕式清潔法概要,http://www.ndl.narl.org.tw/docs/devices/CF/C5_B.pdf
[38]Manfrinato, Vitor R., et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano letters 13.4 (2013): 1555-1558.
[39]林依恩,光通訊元件新寵-透鏡光纖研究與製造(下) ,光連雙月刊,2004/05,51期
[40]Landis, Stefan, ed. Lithography. John Wiley & Sons, 2013.
[41]Wiederrecht, Gary. Handbook of nanofabrication. Academic Press, 2010. PP121-148
[42]林智仁,羅聖全,場發射穿透式電子顯微鏡簡介,工業材料雜誌,201期,2003/09
[43]國立交通大學材料科學與工程系所,Scanning electron microscopy (SEM) ,http://140.113.226.70/www/course/sem.pdf
[44]Michael Wang, ed. Lithography. InTech, 2010
[45] Aurélien Masseboeuf, et al. The Electron Microscope. Sep, 2012
[46]Bhushan, Bharat, ed. Encyclopedia of nanotechnology. No. 544.1 ENC. The Netherlands: Springer, 2012.
[47]Mohajerani, E., et al. Morphological and thickness analysis for PMMA spin coated films. Journal of Optoelectronics and Advanced Materials 9.12 (2007): 3901.
[48]Jones, G., Blythe, S., Ahmed, H.: Very high voltage (500 kV) electron beam lithography for thick resists and high resolution. J. Vac. Sci. Technol. B 5(1), 120–123 (1987)
[49]Lynn Fuller, EtchDepRates, Rochester Institute of Technology, 7.15(2015)
[50] Hunsperger, Robert. Integrated Optics Theory and Technology. springer, 2009.
[51]Dai, Daoxin, Yongbo Tang, and John E. Bowers. Mode conversion in tapered submicron silicon ridge optical waveguides. Optics express 20.12 (2012): 13425-13439.
[52]Yap, Kuan Pei, et al. Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides. Journal of Lightwave Technology 27.18 (2009): 3999-4008.
[53] Pafchek, R., et al. Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation. Applied optics 48.5 (2009): 958-963.
[54]Fu, Yunfei, et al. Efficient adiabatic silicon-on-insulator waveguide taper.Photonics Research 2.3 (2014): A41-A44.
[55]Steinlechner, Jessica, et al. Optical absorption measurements on crystalline silicon test masses at 1550 nm. Classical and Quantum Gravity 30.9 (2013): 095007.
[56]M. N. Polyanskiy. Refractive index database, http://refractiveindex.info (accessed Feb. 30 2016*)
[57]Vlasov, Yurii, and Sharee McNab. Losses in single-mode silicon-on-insulator strip waveguides and bends. Optics express 12.8 (2004): 1622-1631.
[58]Figueroa, R. F., et al. Control of sidewall slope in silicon vias using SF6/O-2 plasma etching in a conventional reactive ion etching tool. Journal of Vacuum Science & Technology B 23.5 (2005): 2226-2231.
[59]Mansano, Ronaldo D., Patrick Verdonck, and Homero S. Maciel. Mechanisms of surface roughness induced in silicon by fluorine containing plasmas.Vacuum 48.7 (1997): 677-679.
[60]U.S. Patent 5,061,642 Method of manufacturing semiconductor on insulator Hiroshi Fujioka, Issue date: Oct 29, 1991
[61]U.S. Patent 4,771,016 Using a rapid thermal process for manufacturing a wafer bonded soi semiconductor, George Bajor et al., Issue date: Sep 13, 1988
[62]U.S. Patent 5,417,180 Method for forming SOI structure, Tomofumi Nakamura, Issue date: May 23, 1995
[63]國家實驗研究院,水平爐管製程技術資料,http://www.ndl.narl.org.tw/docs/devices/CF/T3_B.pdf
[64]OZ optics, TAPERED AND LENSED FIBERS, May 07, 2013
[65]沈欣燕,EIS-700 ICP 奈米深蝕刻系統 SOP,成大微奈米中心,2013/11/18
[66]Dry Silicon Etch for MEMS. J. Bhardwaj, H. Ashraf, A. McQuarrie. Presented at the The Symposium on Microstructures and Microfabricated Systems at the Annual Meeting of the Electrochemical Society, Montreal, Quebec, Canada. May 4-9, 1997.
[67]Legtenberg, Rob, et al. Anisotropic reactive ion etching of silicon using SF 6/O 2/CHF 3 gas mixtures. Journal of The Electrochemical Society 142.6 (1995): 2020-2028.
[68]M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, (1994).
[69]Sun, Chen, et al. Single-chip microprocessor that communicates directly using light. Nature 528.7583 (2015): 534-538.
[70]Reimer, Christian, et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351.6278 (2016): 1176-1180.
[71]Bruck, Roman, and Otto L. Muskens. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Optics express 21.23 (2013): 27652-27661.
[72]羅吉宗,薄膜科技與應用,全華科技圖書股份有限公司, 2005/12
[73]Stanford Research Systems, QCM100- Quartz Crystal Microbalance Theory and Calibration
[74]Kurtz, Olaf, et al. Quartz Crystal Microbalance used to Characterize Electrochemical Metal Deposition. Journal f. Electrochemistry and Plating Technology JEPT 5 (2010): 1-17.
[75]BARNA, P.B. (1992) Crystal growth and recrystallization during structure evolution of thin films, in L. Eckertova and T. Ruzicka (eds.), Proc. Diagnostics and application of thin films, Inst. Phys. Publ., Bristol, pp.295-309
[76]王建義編譯,薄膜工程學,全華科技圖書股份有限公司, 2008/07
[77]Yamamoto, Kenichi, Akinobu Nakamura, and Ushio Hase. Control of cleaning performance of an ammonia and hydrogen peroxide mixture (APM) on the basis of a kinetic reaction model. IEEE transactions on semiconductor manufacturing 12.3 (1999): 288-294.
[78]Center of Micronanotechnology, MASK FABRICATION, Federal Institute of Technology in Lausanne, https://cmi.epfl.ch/photo/photo_process/files/Mask_fab.php
[79] 許進財,陳仕鴻,電子束微影簡介,nano 奈米通訊,第十五卷,第三期,2008/09
[80]Ennis, Courtney P., and Ralf I. Kaiser. Mechanistical studies on the electron-induced degradation of polymethylmethacrylate and Kapton. Physical Chemistry Chemical Physics 12.45 (2010): 14902-14915.
[81]MICROCHEM, PMMA Data Sheet
[82]Huang, Chua-Zu, Ming-Jing Wu, and Shiuan-Yeh Chen. High Order Gap Modes of Film-Coupled Nanospheres. The Journal of Physical Chemistry C 119.24 (2015): 13799-13806.
[83]Krasnok, Aleksandr E., et al. Optical nanoantennas. Physics-Uspekhi 56.6 (2013): 539.
[84]Bruck, Roman, and Otto L. Muskens. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Optics express 21.23 (2013): 27652-27661.
[85]Liu, Haitao, and Philippe Lalanne. Microscopic theory of the extraordinary optical transmission. Nature 452.7188 (2008): 728-731.
[86]Curto, Alberto G., et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329.5994 (2010): 930-933.
[87]Zhang, Nan, et al. High sensitivity molecule detection by plasmonic nanoantennas with selective binding at electromagnetic hotspots. Nanoscale6.3 (2014): 1416-1422.
[88]Kriesch, Arian, et al. Functional plasmonic nanocircuits with low insertion and propagation losses. Nano letters 13.9 (2013): 4539-4545.
[89] Mueller, JP Balthasar, Kristjan Leosson, and Federico Capasso. Polarization-selective coupling to long-range surface plasmon polariton waveguides. Nano letters 14.10 (2014): 5524-5527.
[90] Chikkaraddy, Rohit, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. (2016).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top