跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 01:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈家譽
研究生(外文):Jia-YuShen
論文名稱:基於權威度影響力與社群影響力探勘社群網路之重要影響者
論文名稱(外文):Influencers Identification with Authority and Social Influence in Online Social Networks
指導教授:黃仁暐
指導教授(外文):Jen-Wei Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:46
中文關鍵詞:社群網路社群影響力重要影響者
外文關鍵詞:social networksocial influenceinfluencer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著社群網站與微博空間的興起與創新,資訊的傳遞已更加快速和廣泛,然而在社群網路中,一個具有高影響力價值的影響者,其思想、言行較一般人更容易說服讀者或引發共鳴,進而影響他人之行為與決策,基於市場行銷與資訊散播之成本效益等,如何在一群人之中尋找重要的影響者即成為一個值得深入探討的問題。過去在線上社群網站中尋找重要影響者,主要著重於分支度分析與探勘使用者之社交互動等社群結構資訊,但我們認為,ㄧ個人是否可以成為高影響力的影響者,除考量其社交地位,探勘其社群網路中之貼文亦是相當重要的,因為人們往往更容易受到熱門與重要貼文的影響。因此,我們提出一套新的方法,加入考量使用者文章權威度影響力,並輔以時間因素模擬文章熱門與退燒程度,藉由觀測使用者之文章是否皆為高品質貼文,探勘當下之重要影響者;最後,我們實際利用Epinions社群數據集資料與Twitter用戶資料集做實驗,結果證實該方法找出之重要影響者,確實可以比現存之其他方法影響更多的使用者。
Since the tremendous success of social networking websites like Facebook, Twitter and Google+, the related research on social network analysis have widely been studied and the Social influence is one of the significant and popular topic. In online social networks, influencers are the people who have more influential power to affect others’ emotions, arouse their sympathy or convinced others of new viewpoints, so they can help marketing and lower the costs of spreading information. Most of the traditional methods in measuring influence of users consider following, centrality-based or other social interactions among users using structural-based methods on this problem. To improve the performance, we add a new factor called authority influence, which includes the post dimension, in this problem because a popular or influential post usually
influence many users as well. Moreover, the temporal factor is also considered because of the short lifetime of a post in social media. Eventually, we utilize influence model to simulate the influence propagation in the network by the influencers. The result shows, the influencers found by our method could influence more users in online social networks compared to other existed methods.
中文摘要................i
Abstract ...............ii
Acknowledgment .................iii
Table of Contents ..............iv
List of Figures ...............vi
1 Introduction ...............1
2 Related Works ..............6
2.1 Identifying Influential Bloggers .........6
2.2 Social Influence Analysis ...........9
2.3 Measuring Influence ............10
3 Methodology ...............16
3.1 Overview ..............16
3.2 Influencer Score ............17
3.2.1 Authority Influence Score ..........18
3.2.2 Social Influence Score ...........24
3.3 Influence Measurement ............26
4 Experiments ...............28
4.1 Data Description .............28
4.2 Verification ..............29
4.3 Performance Evaluation ...........31
5 Conclusions and Future Works ...........40
Reference ................41
[1] B. D. Abrahao, S. Soundarajan, J. E. Hopcroft, and R. Kleinberg. In the separability of structural classes of communities. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 624–632, 2012.
[2] N. Agarwal, H. Liu, H. Tang, and P. S. Yu. Identifying the influential bloggers in a community. In Proceedings of the International Conference on Web Search and web Data
Mining, pages 207–218, 2008.
[3] L. Akritidis, D. katsaros, and P. Bozanis. Identifying influential bloggers: Time does matter. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology, pages 76–83, 2009.
[4] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S. Leonardi. Power in unity: forming teams in large-scale community systems. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pages 599–608, 2010.
[5] S. Asur, B. A. Huberman, G. Szabo, and C. Wang. Trends in social media: Persistence and decay. In Proceedings of the 5th International Conference on Weblogs and Social Media, 2011.
[6] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks in information diffusion. In Proceedings of the 21st International Conference on World Wide Web, pages 519–528, 2012.
[7] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E. Settle, and J. H. Fowler. A 61-million-person experiment in social influence and political mobilization. Nature, 489(11421):295–298, 2012.
[8] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proceeding of the 6th International World Wide Web Conference, pages 107–117, 1998.
[9] N. Bunkley. Joseph juran, 103, pioneer in quality control, dies. In New York Times, 2008.
[10] C. C. Cao, Y. Tong, L. Chen, and H. V. Jagadish. Wisemarket: a new paradigm for managing wisdom of online social users. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 455–463, 2013.
[11] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring user influence in twitter: The million follower fallacy. In Proceedings of the 14th International AAAI
Conference on Weblogs and Social Media, pages 81–89, 2010.
[12] N. A. Christakis and J. H. Fowler. Connected: the surprising power of our social networks and how they shape our lives. Back Bay Books, pages 300–325, 2011.
[13] P. Domingos and M. R. and. Mining the network value of customers. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pages 57–66, 2001.
[14] P. Domingos and M. Richardson. Mining the network value of customers. In Proceeding of the 11st ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 57–66, 2001.
[15] J. L. Duan, S. Prasad, and J. W. Huang. Discovering unknown but interesting items on personal social network. In Proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 145–156, 2012.
[16] L. Egghe. Theory and practise of the g-index. Scientometrics, 69(1):131–152, 2006.
[17] W. Feng and J. Wang. Incorporating heterogeneous information for personalized tag recommendation
in social tagging systems. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1276–1284, 2012.
[18] K. Fujimura, T. Inoue, and M. Sugisaki. The eigenrumor algorithm for ranking blogs. In Proceedings of the 14th International Conference on World Wide Web workshop on
Weblogging Ecosystem, 2005.
[19] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In Proceeding of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 597–605, 2012.
[20] J. Goldenberg. Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata. Academy of Marketing Science Review, 1:100–108, 2001.
[21] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 12(3):211–223, 2001.
[22] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Discovering leaders from community actions. In Proceeding of the 16th ACM Conference on Information and Knowledge Management,
pages 499–508, 2008.
[23] M. Granovetter. Threshold models of collective behavior. The American Journal of Sociology, 83(6):1420–1443, 1978.
[24] M. S. Granovetter. The strength of weak tie. American Journal of Sociology, 78(6):1360–1380, 1973.
[25] J. E. Hirsch. An index to quantify an individual’s scientific research output. In Proceedings of the National Academy of Sciences of the United States of America, pages 16569–16572, 2005.
[26] A. M. Kaplan and M. Haenlein. The early bird catches the news: Nine things you should know about micro-blogging. Business Horizons, 54(2):105–113, 2011.
[27] G. Kasneci, M. Ramanath, M. Sozio, F. Suchanek, and G. Weikum. Star: Steiner-tree approximation in relationship graphs. In Proceedings of the 25th IEEE International Conference on Data Engineering, pages 868–879, 2009.
[28] E. Keller and J. Berry. The influentials: One american in ten tells the other nine how to vote, where to eat and, what to buy. In The Free Press, 2003.
[29] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceeding of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 137–146, 2003.
[30] M. Kendall. A new measure of rank correlation. Biometrika, 30(1):80–89, 1938.
[31] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of the 9th ACM-SIAM symposium on Discrete algorithms, pages 668–677, 1998.
[32] X. Kong, J. Zhang, and P. S. Yu. Inferring anchor links across multiple heterogeneous social networks. In Proceeding of the 22nd ACM Conference on Information and Knowledge Management, pages 179–188, 2013.
[33] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news media? In Proceedings of the 19th International Conference on World wide web, pages 591–600, 2010.
[34] H. Li, X. Ma, F. Wang, J. Liu, and K. Xu. On popularity prediction of videos shared in online social networks. In Proceeding of the 22nd ACM Conference on Information and Knowledge Management, pages 169–178, 2013.
[35] N. Li and D. Gillet. Identifying influential scholars in academic social media platforms. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pages 608–614, 2013.
[36] X. Li, S. Cheng, W. Chen, and F. Jiang. Novel user influence measurement based on user interaction in microblog. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pages 615–619, 2013.
[37] C. L. Lin and H. Y. Kao. Blog popularity mining using social interconnection analysis. IEEE Internet Computing, 14(4):41–49, 2010.
[38] Q. Liu, T. Luo, R. Tang, and S. Bressan. An efficient and truthful pricing mechanism for team formation in crowdsourcing markets. In Proceedings of the IEEE International Conference on Communications, pages 567–572, 2015.
[39] H. Ma, H. Yang, M. R. Lyu, and I. King. Mining social networks using heat diffusion processes for marketing candidates selection. In Proceeding of the 17th ACM Conference on Information and Knowledge Management, pages 233–242, 2008.
[40] A. A. Markov. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. Dynamic Probabilistic Systems, 1:41–49, 1971.
[41] P. Massa and P. Avesani. Trust-aware bootstrapping of recommender systems. In Proceedings of ECAI Workshop on Recommender Systems, pages 29–33, 2006.
[42] S. A. Myers, A. Sharma, P. Gupta, and J. Lin. Information network or social network?: the structure of the twitter follow graph. In Proceedings of the 23rd International Conference on World Wide Web, pages 493–498, 2014.
[43] M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics, 46(5):323–351, 2005.
[44] J. R. Norris. Markov chains. Cambridge University Press, 1998.
[45] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. In Proceedings of the 7th International World Wide Web Conference, pages 161–172, 1999.
[46] S. Y. Park and A. K. Bera. Maximum entropy autoregressive conditional heteroskedasticity model. Journal of Econometrics, 150(2):219–230, 2008.
[47] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. In Proceeding of the 12nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 61–70, 2002.
[48] E. M. Rogers. Diffusion of innovations. Free Press. 5th edition, pages 123–154, 2003.
[49] G. Saltion and C. Buckley. Term-weighting approaches in automatic text retrieval. Information processing and management, 24(5):513–523, 1988.
[50] J. Tang, H. Gao, H. Liu, and A. D. Sarma. etrust: understanding trust evolution in an online world. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 253–261, 2012.
[51] Y. Tian and J. Zhu. Learning from crowds in the presence of schools of thought. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 226–234, 2012.
[52] M. Trusov, R. E. Bucklin, and K. Pauwels. Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site. Journal of Marketing, 73(5):90–102, 2009.
[53] D. Tunkelang. A twitter analog to pagerank. In The Noisy Channel, 2009.
[54] G. Wang, Y. Zhao, X. Shi, and P. S. Yu. Magnet community identification on social networks. In Proceeding of the 18th ACM SIGKDD International Conference on knowledge Discovery and Data Mining, pages 588–596, 2012.
[55] G. Wang, Y. Zhao, X. Shi, and P. S. Yu. Magnet community identification on social networks. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 588–596, 2012.
[56] X. Wang and G. Sukthankar. Multi-label relational neighbor classification using social context features. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 464–472, 2013.
[57] X. Yang, H. Steck, and Y. Liu. Circle-based recommendation in online social networks. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1267–1275, 2012.
[58] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen. Lcars: a location-content-aware recommender system. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 221–229, 2013.
[59] G. Zhao, M.-L. Lee, W. Hsu, W. Chen, and H. Hu. Community-based user recommendation in uni-directional social networks. In Proceeding of the 22nd ACM Conference on Information and Knowledge Management, pages 189–198, 2013.
[60] Y. Zhu, E. Zhong, S. J. Pan, X. Wang, M. Zhou, and Q. Yang. Predicting user activity level in social networks. In Proceeding of the 22nd ACM Conference on Information and Knowledge Management, pages 159–168, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊