|
Askarzadeh, A. (2014). Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran. Energy, 72, 484-491. Dorigo,M.,Maniezzo,V.,&Colorni,A.(1996)Ant system:optimization by a colony of cooperating agents.Systems,Man and Cybernetics,PartB:CIEEE Transactions on,26(1),29-41. Eberhart,R.C.,&Kennedy,J.(1995).A new optimizer using particle swarm theory.paper presented at the Proceedings of the sixth international symposium on micro machine and human science. Esteves, G. R., Bastos, B. Q., Cyrino, F. L., Calili, R. F., & Souza, R. C. (2015). Long Term Electricity Forecast: A Systematic Review. Procedia Computer Science, 55, 549-558. Filik, Ü. B., Gerek, Ö. N., & Kurban, M. (2011). A novel modeling approach for hourly forecasting of long-term electric energy demand. Energy conversion and management, 52(1), 199-211. Glover,F.(1989).Tabu search-partI.ORSA Journal on computing,1(3),190-206 González-Romera, E., Jaramillo-Morán, M., & Carmona-Fernández, D. (2008). Monthly electric energy demand forecasting with neural networks and Fourier series. Energy conversion and management, 49(11), 3135-3142. Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A. J., Lloret, J., & Massana, J. (2014). A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings. Communications Surveys & Tutorials, IEEE, 16(3), 1460-1495. Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term load forecasting: A review and evaluation. Power Systems, IEEE Transactions on, 16(1), 44-55. Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press. Huang, C.-M., Huang, C.-J., & Wang, M.-L. (2005). A particle swarm optimization to identifying the ARMAX model for short-term load forecasting. Power Systems, IEEE Transactions on, 20(2), 1126-1133. Huang, S.-J., & Shih, K.-R. (2003). Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. Power Systems, IEEE Transactions on, 18(2), 673-679. Jaramillo-Morán, M. A., González-Romera, E., & Carmona-Fernández, D. (2013). Monthly electric demand forecasting with neural filters. International Journal of Electrical Power & Energy Systems, 49, 253-263. Kıran, M. S., Özceylan, E., Gündüz, M., & Paksoy, T. (2012). A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey. Energy conversion and management, 53(1), 75-83. Lee, W.-J., & Hong, J. (2015). A hybrid dynamic and fuzzy time series model for mid-term power load forecasting. International Journal of Electrical Power & Energy Systems, 64, 1057-1062. Moghram, I., & Rahman, S. (1989). Analysis and evaluation of five short-term load forecasting techniques. Power Systems, IEEE Transactions on, 4(4), 1484-1491. Nawaz, S., Iqbal, N., & Anwar, S. (2014). Modelling electricity demand using the STAR (Smooth Transition Auto-Regressive) model in Pakistan. Energy, 78, 535-542. Pao, H. (2009). Forecasting energy consumption in Taiwan using hybrid nonlinear models. Energy, 34(10), 1438-1446. Wang, J., Zhu, W., Zhang, W., & Sun, D. (2009). A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand. Energy Policy, 37(11), 4901-4909. Yin, P. Y., Glover, F., Laguna, M., & Zhu, J. X. (2010). Cyber swarm algorithms–improving particle swarm optimization using adaptive memory strategies. European Journal of Operational Research, 201(2), 377-389. Zhang, W. Y., Hong, W.-C., Dong, Y., Tsai, G., Sung, J.-T., & Fan, G.-f. (2012). Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy, 45(1), 850-858.
|