跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴延信
研究生(外文):Yan-Shin Lai
論文名稱:環型無線網狀網路之能量效益之模擬研究
論文名稱(外文):Simulation Study of Energy Efficiency in a Ring-based Wireless Mesh Network
指導教授:黃建華黃建華引用關係
指導教授(外文):Jian-Hua Huang
口試委員:溫志煜郭耀文
口試委員(外文):Jhih-Yu WunYao-Wun Guo
口試日期:2015-12-02
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:39
中文關鍵詞:能量效率傳送功率傳送速率吞吐量分析
外文關鍵詞:Energy EfficiencyTransmission PowerTransmission RateThroughput Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
無線網狀網路 (WMN) 是一個有前途的解決方案來支持無處不在的寬帶服務。 在環狀式無線網狀網路中傳送功率和傳送距離影響了其重要的幾樣因子,包括系統的吞吐量和功率消耗。本文探討能量效率之多通道環狀式無線網狀網路。我們提出一個簡單的頻率規劃在我們的環形無線網狀網路來提升能力。 我們也開發了一個實體層 (PHY) /媒體存取控制層 (MAC) 的跨層分析模型來評估無線網狀網路的吞吐量在考慮的載波偵聽多路訪問 (CSMA) 的MAC協議, 及在實體層中跳躍距離對傳輸速率的影響。最後分析的結果將會用模擬來驗證 。我們將能得到重要的指南在我們的網路佈署上,第一點就是我們的系統涵蓋範圍必須是要被設計的,第二點,在我們設計的涵蓋範圍之後,每一環的寬度也必須被好好的設計來達到整體的能量效益。
The wireless mesh network (WMN) is a promising solution to support ubiquitous broadband services. The major factors include throughput and power consumption are impacted by transmitted power and transmitted distance in ring-based WMN. This paper investigates energy efficiency in multichannel ring-based WMN. We suggest a simple frequency planning in the proposed ring-based WMN to improve the capacity. We develop a physical (PHY) / medium access control (MAC) cross-layer analysis model to evaluate the throughput of proposed WMN, by taking account of the carrier sense multiple-access (CSMA) MAC protocol, and the impact of hop distance on transmission rate in the PHY layer. Analysis results will be validated by simulations. We will get the important guidance for network deployment, the first point is that our system coverage must be designed, and the second point, after the system coverage be designed, the width of each ring must also be properly designed to achieve the overall energy efficiency.
目次
誌謝 I
摘要 II
Abstract III
目次 IV
圖目次 VI
表目次 VIII
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3 論文目標 2
1.4 文獻探討 3
第二章 無線網狀網路系統模型之簡介 5
2.1 網路架構 5
2.2 環狀式頻率分配 6
2.3 路徑衰減模型 7
2.4 功率消耗模型 7
2.5 無線網狀網路資源競爭 8
2.5.1 相互干擾區塊 9
2.5.2 無線碰撞區塊 9
2.5.3 徒勞無功區塊 10
第三章 環狀式無線網狀網路通道活動情形 11
3.1 成功/失敗傳送的機率 12
3.2 觀察到空時間槽的機率 14
3.3 其他使用者成功/失敗傳送的機率 15
第四章 能量效益之吞吐量與功率消耗之分析 18
4.1 網路背景 18
4.2 使用者的資料量 19
4.3 媒體存取控制層吞吐量 20
4.4 跳躍距離對傳送速率的影響 23
4.5 單一使用者平均能量消耗 24
4.6 能量效益 24
第五章 分析與模擬結果 25
第六章 結論 35
參考文獻 36
圖目次
圖1.1:環狀式無線網狀網路中網狀使用者架構 1
圖2.1:三細胞無限網狀網路頻率分配的例子 6
圖2.2:無限碰撞區塊與相互干擾區塊之範例 8
圖3.1:使用者P正在競爭資源時,使用者P與其線碰撞區塊 12
圖3.2:使用者P正當前時間槽倒數時,使用P與其相互干擾之區塊 14
圖4.1:在一有效時間槽中一使用者多資料幀到達的狀態改變。 21
圖5.1: 對於最內圈A1之不同的內圈寬度r1中,系統的涵蓋範圍 rn 與其相對應的系統容量和流量負載的關係在 PTx=20dBm 。 26
圖5.2: 對於最內圈A1之不同的內圈寬度r1中,系統的涵蓋範圍rn 與其相對應的系統容量和流量負載的關係在 PTx=25dBm 。 27
圖5.3: 對於最內圈之不同的內圈寬度r1中,最內圈A1中的使用者的平均能量消耗Pavg,1以及其相對的系統涵蓋範圍rn的關係在 PTx=20dBm。 28
圖5.4: 對於最內圈之不同的內圈寬度r1中,最內圈A1中的使用者的平均能量消耗Pavg,1以及其相對的系統涵蓋範圍rn的關係在 PTx=25dBm。 29
圖5.5:對於不同系統涵蓋範圍rn ,平均能量消耗Pavg,1 以及其相對應的內圈A1之內圈寬度r1的關係在 PTx=20dBm。 30
圖5.6:對於不同系統涵蓋範圍rn ,平均能量消耗Pavg,1 以及其相對應的內圈A1之內圈寬度r1的關係在 PTx=25dBm。 31
圖5.7: 對於最內圈A1之不同的內圈寬度 r1 中,系統的涵蓋範圍 rn 與其相對應的能量效益Pe 的關係在 PTx=20dBm 。 32
圖5.9:在涵蓋範圍rn =300m時, 能量效益Pe以及其相對應的內圈A1之內圈寬度r1的關係在 PTx=20dBm。 33
圖5.10:在涵蓋範圍rn =300m時, 能量效益Pe以及其相對應的內圈A1之內圈寬度r1的關係在 PTx=25dBm。 33
表目次
表1:系統參數表 25

[1] N. B. Yiqun Wu, Shroff and Z. Niu, “Energy minimization in cooperative relay networks with sleep modes,” IEEE, Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 200–207, 2012.
[2] X. Chen and N. Rowe, “Saving energy by adjusting transmission power in wireless sensor networks,” IEEE, Global Telecommunications Conference, pp. 1 – 5, 2011.
[3] Rashed, M.B.; Javaid, N.; Khan, Z.A.; Qasim, U.; Ishfaq, M., “E-HORM: An energy-efficient hole removing mechanism in Wireless Sensor Networks,” IEEE,Electrical and Computer Engineering (CCECE), pp. 1 – 4, 2013.
[4] Yutao Zhu; Zhimin Zeng; Tiankui Zhang; Dantong Liu, “A QoS-Aware Adaptive Access Point Sleeping in Relay Cellular Networks for Energy Efficiency” IEEE,Vehicular Technology Conference (VTC Spring), pp. 1 – 5, 2014.
[5] Yong Sheng Soh; Quek, T.Q.S.; Kountouris, M. “ynamic sleep mode strategies in energy efficient cellular networks” IEEE, Communications (ICC), pp. 3131 – 3136,2013.
[6] Xiao Chen; Rowe, N.C., “Saving Energy by Adjusting Transmission Power in Wireless Sensor Networks,” IEEE, Global Telecommunications Conference (GLOBECOM), pp. 1 – 5, 2011.
[7] S. Harold and A. Vijayalakshmi, “Enhanced power control mac protocol for wireless ad hoc networks,” IEEE Communications and Signal Processing, pp. 6 – 12,April 2012.
[8] Meghji, M.; Habibi, D., “Transmission power control in multihop wireless sensor networks,” IEEE, Ubiquitous and Future Networks (ICUFN), pp. 25 – 30, 2011.
[9] A. Belghith and W. Akkari, “Performance evaluation of power save protocols using carrier sensing in multihop ad hoc networks,” IEEE Computer Systems and Applications, pp. 616 – 623, May 2009.
[10] Jin Wang; Liwu Zuo; Zhongqi Zhang; Feng Xia; Jeong-Uk Kim, “Mobility Based Data Collection Algorithm for Wireless Sensor Networks,” Mobile Ad-hoc and Sensor Networks (MSN), pp. 342 – 347, 2013.
[11] Xin He; Li, F.Y. “An optimal energy efficient cooperative retransmission MAC scheme in wireless networks,” Wireless Communication, Vehicular Technology,Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), pp. 1 – 5, 2011.
[12] Huiyong Yuan; Jiansheng Xie, “Node deployment strategy for a mobile sink in wireless sensor networks,” IEEE, Communication Software and Networks (ICCSN),pp. 361 – 364, 2011.
[13] Parzysz, F.; Mai Vu; Gagnon, F., “Trade-Offs on Energy-Efficient Relay Deployment in Cellular Networks,” IEEE, Vehicular Technology Conference (VTC Fall), pp. 1 – 6,
2014.
[14] Lau, A.P.T.; Shuguang Cui, “Joint Power Minimization in Wireless Relay Channels,” IEEE, Wireless Communications, pp. 2820 – 2024, 2007.
[15] Gupta, S.; Bose, R., “Joint routing and power allocation optimization in outage constrained multihop wireless networks,” IEEE, Personal Indoor and Mobile Radio Communications (PIMRC), pp. 2245 – 2249, 2013.
[16] Wan-Jen Huang; Hong, Y.-W.P.; Kuo, C.-C.J., “Lifetime maximization foramplify-and-forward cooperative networks,” IEEE, Wireless Communications, pp.1800 – 1805, 2008.
[17] Pathak, A.; Zaheeruddin; Lobiyal, D.K., “Maximization the lifetime of wireless sensor network by minimizing energy hole problem with exponential node distribution and
hybrid routing,” IEEE, Engineering and Systems (SCES), pp. 1 – 5, 2012.
[18] T. Liu and W. Liao, “Location-dependent throughput and delay in wireless mesh networks,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 1188–1198, Mar. 2008.
[19] L.-C. W. J.-H. Huang and C.-J.Chang, “Capacity and qos for a scalable ring-based wireless mesh network,” IEEE J.Select. Areas Commun, Nov. 2006.
[20] V. E. et al., “IEEE 802.11TGn Channel models,” IEEE 802.11-03/940r4, Jan 2005.
[21] C. C. P. Kyasanur, J. So and N. H. Vaidya, “Multi-channel mesh network: Challenges and protocols,” IEEE Wireless Communications, vol. 13, no. 2, pp. 30–36,Apr. 2006.
[22] MOTOMESH, Quattro, available://www.motorola.com/mesh.
[23] D. Qiao and A. Soomro, MiSer: An Optimal Low-Energy Transmission Strategy for IEEE 802.11a/h.
[24] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed. New York: John Wiley and Sons, Inc, 1998.
[25] E.-S. Jung and N. H. Vaidya, “A power saving mac protocol for wireless network,”July 2002.
[26] Cisco Aironet IEEE 802.11A 1200 Series Access Point Upgrade Kits, avail-able://www.cisco.com/.
[27]Y.C. Yay and K. C. Chua, “A capacity analysis for the IEEE 802.11 MAC protocol,” Wireless Network, pp. 159-171, Jul.2001.
[28] A. S. Daji Qiao, Sunghyun Choi and K. G. Shin, “Energy-efficient pcf operation of ieee 802.11a wireless lan,” IEEE INFOCOM, vol. 2, pp. 580–589, 2002.
[29] L.-C. W. J.-H. Huang and C.-J.Chang, “Throughput-coverage tradeoff in a scalable wireless mesh network,” Journal of Parallel and Distributed Computing, vol. 68,pp. 278–290, Mar. 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top