跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃忠楷
研究生(外文):HUANG,CHUNG-KAI
論文名稱:新穎性光敏劑之合成、性質及太陽能電池應用
論文名稱(外文):Synthesis, Properties and Solar Cell Applications of Novel Photo-sensitizers
指導教授:林敬堯林敬堯引用關係
指導教授(外文):LIN,CHING-YAO
口試委員:吳景雲陳元璋
口試委員(外文):WU,CHING-YUNCHEN,YUAN-CHANG
口試日期:2016-06-30
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:156
中文關鍵詞:染料敏化太陽能電池光敏劑電聚合
外文關鍵詞:Dye-Sensitized Solar CellsPhotosensitizersElectropolymerization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文成功合成出 LS-00、LS-01、LS-03、H2N-Ph-Zn(t-Bu)-Ph-NO2 四種染料。其中 LS-01 應用於染料敏化太陽能電池中之光敏劑;LS-03 則將其電聚合並利用於染料敏化太能電池中之陰極。
大環與取代基之間以 Sonogashira cross-coupling 形成碳-碳參鍵的鍵結。其中 LS-01 取代基為單邊 benzoic acid、LS-03 取代基為單邊 aniline,H2N-Ph-Zn(t-Bu)-Ph-NO2 為紫質化合物,一邊含推電子基團的 aniline,另一邊則為含有拉電子基團 的 nitro 取代基。
LS-01 通過紫外光-可見光吸收光譜、螢光放射光譜、電化學、電子能階,密度泛函理論等光物理性質之計算與量測證明可以應用於 n 型的染料敏化太陽能電池中。在搭配碘電解液的條件下,LS-01 之光電總轉換效率可達 4.98%,是高於類似結構之紫質染料 H2PE1 的 2.18%。
LS-03 藉由循環伏安法電聚合於 FTO 玻璃,希望能應用於染料敏化太陽能電池中之陰極以取代白金電極,陽極之光敏劑為 N719 的條件下,LS-03 之光電轉換效率為 0.57%,白金當陰極其光電轉換效率則為 6.63%。

In this thesis, LS-00, LS-01, LS-03 and H2N-Ph-Zn(t-Bu)-Ph-NO2 were synthesized. The LS-01 dye is used in dye-sensitized solar cell as the photosensitizer; Electropolymerized film of LS-03 is used in dye sensitized solar cell as the cathode material.
For LS-01 and LS-03 sensitizers, a benzoic acid group or an aniline group were connected to the bacteriochlorin core through C-C triple bonds. For H2N-Ph-Zn(t-Bu)-Ph-NO2, an aniline group and a nitro group were coupled to the macrocycle. They were connected to the porphyrin core through C-C triple bonds.
The UV-visible, fluorencene emission, electrochemical, energy level diagram and density functional theory showed that LS-01 can be used in n-type solar cells. With an I-/I3- electrolyte, the LS-01 DSSC shows a power conversion efficiency of η = 4.98%, which was higher than a reference porpyrin dye, H2PE1 (η = 2.18%).
We synthesized LS-03 to prepare electropolymerized film on FTO. This polymer film can use as cathode in dye sensitized solar cell. DSSC application of LS-03 polymerized cathode and N719 as photosensitizer showed an power conversion efficiency of η = 0.57%, which was lower than Pt traditional cathode (η = 6.63%).

謝誌 I
摘要 II
Abstract III
目次 IV
圖目次 VII
表目次 XI
第一章 序論 1
1-1 前言 1
1-2 太陽能電池 3
第二章 染料敏化太陽能電池 8
2-1 染料敏化太陽能電池簡介 8
2-2 染料敏化太陽能電池結構介紹 10
2-3 染料敏化太陽能電池工作原理 17
2-4 染料敏化太陽能電池之光敏劑研究 20
2-4-1 釕金屬錯合物光敏劑 20
2-4-2 紫質光敏劑 24
2-4-3 有機分子光敏劑 30
2-5 菌綠素 (bacteriochlorins) 33
2-5-1 簡介 33
2-5-2 菌綠素之發展與研究 35
2-6 電聚合介紹 43
2-7 染料堆疊的現象 48
2-8 染料敏化太陽能電池元件轉換效率測量 50
2-9 入射單色光子-電子轉換效率 (IPCE) 51
2-10 空氣質量 (Air Mass) 52
2-11 本論文研究動機 53
第三章 實驗部分 55
3-1 實驗藥品 55
3-2 溶劑乾燥處理 58
3-3 儀器設備 59
3-4 莫耳吸收係數原理 60
3-5 量子產率計算方法 60
3-6 管柱層析法 61
3-7 Sonogashira cross-coupling reaction 61
3-8 染料之合成步驟與鑑定資料 62
3-8-1 化合物 LS-00 之合成步驟 62
3-8-2 化合物 LS-01~03 之合成步驟 63
3-8-3 化合物 NH2-Ph-Zn(t-Bu)-Ph-NO2 之合成步驟 63
3-8-4 合成化合物 LS-00 64
3-8-5 合成化合物 LS-01 70
3-8-6 合成化合物 LS-02 75
3-8-7 合成化合物 LS-03 80
3-8-8 合成化合物 NH2-Ph-Zn(t-Bu)-Ph-NO2 83
第四章 結果與討論 87
4-1 菌綠素與其含苯甲酸拉電子基團之光敏劑 87
4-1-1 LS-00、LS-01 與 H2PE1 溶解於 THF 之紫外光-可見光吸收光譜 87
4-1-2 LS-01 與 H2PE1 吸附於二氧化鈦薄膜之 UV-vis 吸收光譜 90
4-1-3 LS-00、LS-01 與 H2PE1 溶解於 THF 之螢光放射光譜 91
4-1-4 LS-00 與 LS-01 之螢光量子產率 93
4-1-5 LS-00、LS-01 與 H2PE1 之電化學性質 95
4-1-6 LS-00、LS-01 與 H2PE1 之電子能階 98
4-1-7 LS-00、LS-01 與 H2PE1 之 density-fuctional theory (DFT) 理論計算 100
4-1-8 LS-01、H2PE1 之光伏性質 101
4-1-9 LS-02 之討論 103
4-1-10 結論 104
4-2 含苯胺之電聚合反應及應用 105
4-2-1 LS-03、H2N-Ph-Zn(t-Bu)-Ph-NO2 溶解於 THF 之紫外光-可見光吸收光譜 105
4-2-2 LS-03、H2N-Ph-Zn(t-Bu)-Ph-NO2 溶解於 THF 之螢光放射光譜 107
4-2-3 LS-03 之螢光量子產率 109
4-2-4 LS-00、LS-03、H2N-Ph-Zn(t-Bu)-Ph-NO2 之電化學性質 111
4-2-5 LS-03、H2N-Ph-Zn(t-Bu)-Ph-NO2 之電聚合膜 114
4-2-6 聚合膜應用於染料敏化太陽能電池陰極及其光伏性質 115
4-2-7 LS-03 與 H2N-Ph-Zn(t-Bu)-Ph-NO2 之電子能階 117
4-2-8 結論 120
參考文獻 121
附錄 131
附錄一 氫譜、碳譜,以及質譜 131
附錄二 元素分析結果 153

圖 1-1 全球氣溫平均溫度變化趨勢 1
圖 1-2 德國再生能源之比例 2
圖 1-3 太陽能電池分類 3
圖 1-4 有機共軛高分子電池主動層之工作原理 5
圖 1-5 鈣鈦礦化合物晶體結構 6
圖 1-6 各種不同太陽能電池歷年光電轉換效率發展 7
圖 2-1 染料敏化太陽能電池結構示意圖 10
圖 2-2 常用半導體材料能階 12
圖 2-3 太陽光波長與光子通量百分比 13
圖 2-4 羧酸根吸附在二氧化鈦上可能之鍵結形式示意圖 14
圖 2-5 常見離子液體之結構 15
圖 2-6 染料敏化太陽能電池之工作原理示意圖 17
圖 2-7 染料敏化太陽能電池工作機制之反應時間 19
圖 2-8 染料 N3 結構與其吸收光譜圖 20
圖 2-9 染料 N749 結構與其吸收光譜圖 21
圖 2-10 染料 N719 之化學結構 21
圖 2-11 染料 Z907 之化學結構與長時間光照下元件各項數據變化圖 22
圖 2-12 染料 CYC-B11 之化學結構與吸收光譜圖 23
圖 2-13 紫質化學結構與各位置分佈示意圖 24
圖 2-14 四軌域模型解釋紫質染料 ZnOEP之吸收光譜 25
圖 2-15 染料 Zn-3、Zn-5、Zn-8、Zn-11、Zn-13 之化學結構 26
圖 2-16 紫質於 meso 位置修飾不同取代基之化學結構 27
圖 2-17 染料 LD11 ~ LD14 之化學結構 28
圖 2-18 染料 SM371 與 SM315 之化學結構 29
圖 2-19 染料 SM371 與 SM315 之 IPCE 及 J-V curve 圖 29
圖 2-20 有機分子設計概念 30
圖 2-21 染料 C281 之化學結構 31
圖 2-22 染料 ADEKA-1 與 LEG4 之化學結構 32
圖 2-23 染料 ADEKA 與 LEG4 共敏化後之效率圖 32
圖 2-24 菌綠素之化學結構示意圖 33
圖 2-25 菌綠素衍生物 Bacteriochlorophylls a、b,及 g 之化學結構 33
圖 2-26 菌綠素修飾位置影響層面示意圖 34
圖 2-27 四軌域模型解釋菌綠素之吸收光譜 35
圖 2-28 菌綠素 H-BC 及 OMe-BC 之化學結構及其吸收光譜圖 36
圖 2-29 菌綠素 BC-1 ~ BC-6 之化學結構及其吸收光譜圖 37
圖 2-30 菌綠素可能溴化之位置示意圖 37
圖 2-31 菌綠素 FbB-EI 之化學結構及其吸收光譜圖 38
圖 2-32 菌綠素 BChlorin-1 與 BChlorin-1 之化學結構及吸收光譜圖 39
圖 2-33 五、六元環亞醯胺與 Oxobacteriochlorins 之化學結構 41
圖 2-34 五、六元環亞醯胺與 Oxobacteriochlorins 之吸收與螢光光譜 41
圖 2-35 染料 YD2 與 BC2H 之化學結構與 UV-Vis 吸收光譜圖 42
圖 2-36 染料 YD2 (red line) 與 BC2H (blue line) 之 J-V curve 及 IPCE 圖 42
圖 2-37 苯胺電聚合反應機制 44
圖 2-38 紫質 metallo-AEBPP 之化學結構與 CV-正電位重複掃描 45
圖 2-39 紫質 metallo-AEBPP 之吸收光譜圖 45
圖 2-40 單體之化學結構與循環伏安圖 46
圖 2-41 單體之循環伏安圖-正電位重複掃描與薄膜循環伏安圖 46
圖 2-42 紫質 Zn2、Zn4 與 Zn6 之化學結構 47
圖 2-43 紫質 Zn4 之循環伏安圖-負電位重複掃描 47
圖 2-44 分子堆疊示意圖 48
圖 2-45 激子模型中雙分子的各種排列方式 49
圖 2-46 光電轉換效率之 J-V curve 圖 50
圖 2-47 空氣質量 (air mass) 示意圖 52
圖 2-48 染料 LS-00、LS-01 與 LS-02 之化學結構 53
圖 2-49 染料 NH2-Ph-Zn(t-Bu)-Ph-NO2 與 LS-03 之化學結構 54
圖 3-1 反應機制 (Sonogashira cross-coupling) 示意圖 61
圖 3-2 化合物 LS-00 之合成步驟 62
圖 3-3 化合物 LS-01~LS-03 之合成步驟 63
圖 3-4 化合物 NH2-Ph-Zn(t-Bu)-Ph-NO2 之合成步驟 63
圖 4-1 染料 LS-00、LS-01 與 H2PE1 溶解於 THF 之紫外光-可見光吸收光譜 88
圖 4-2 染料 LS-01 與 H2PE1溶解於 THF 以及吸附於 TiO2 薄膜上之紫外光-可見光吸收光譜 90
圖 4-3 染料 LS-00、LS-01 與 H2PE1 溶解於 THF 之螢光放射光譜 91
圖 4-4 染料 LS-00、LS-01 與 HITCI 固定吸收度之吸收光譜圖 93
圖 4-5 染料 LS-00、LS-01 與 HITCI 以 688 nm 激發之螢光放射光譜圖 93
圖 4-6 染料 LS-00 與 LS-01 之 CV 及 DPV 圖 (a)氧化電位 (b)還原電位 96
圖 4-7 染料 LS-00 與 H2PE1 之 CV 及 DPV 圖 (a)氧化電位 (b)還原電位 97
圖 4-8 染料 LS-00、LS-01 與 H2PE1 之 absorption 及 Emission 均一化疊圖 99
圖 4-9 染料 LS-00、LS-01 與 H2PE1 之能階示意圖 99
圖 4-10 染料 LS-00、LS-01 與 H2PE1 之分子軌域模型模擬圖 100
圖 4-11 染料 LS-01 與 H2PE1 之 (a) Current-Voltage 圖與 (b) IPCE圖 101
圖 4-12 染料 LS-01 與 LS-02 之化學結構 103
圖 4-13 染料 LS-03 與 H2N-Ph-Zn(t-Bu)-Ph-NO2 溶解於 THF 之紫外光-可見光吸收光譜 106
圖 4-14 染料 LS-03 與 H2N-Ph-Zn(t-Bu)-Ph-NO2 溶解於 THF 之螢光放射光譜 107
圖 4-15 染料 LS-03 固定吸收度之吸收光譜圖與放大圖 109
圖 4-16 染料 LS-03 以 370 nm 激發之螢光放射光譜圖 109
圖 4-17 染料 LS-03 之 CV 及 DPV 圖 (a)氧化電位 (b)還原電位 112
圖 4-18 染料 H2N-Ph-Zn(t-Bu)-Ph-NO2 之 CV 及 DPV 圖 (a)氧化電位 (b)還原電位 112
圖 4-19 染料 LS-03 之溶液狀態下以及電聚合在 FTO 玻璃之吸收光譜圖 114
圖 4-20 染料 LS-03 與 Pt 當陰極之 (a) Current-Voltage 圖與 (b) IPCE圖 115
圖 4-21 染料 LS-03 與 H2N-Ph-Zn(t-Bu)-Ph-NO2 absorption 及 Emission 均一化後之疊圖 118
圖 4-22 染料 LS-03 與 H2N-Ph-Zn(t-Bu)-Ph-NO2 之能階示意圖 118

表 2-1 染料 Zn-3、Zn-5、Zn-8、Zn-11 及 Zn-13 元件之光伏性質 26
表 2-2 染料 Zn(Ph4)、Zn(4-methylPh)、Zn(4-ethylPh)、Zn(4-n-butylPh)、Zn(4-n-octylPh)、Zn(3,5-dimethylPh) 元件之光伏性質 27
表 4-1 染料 LS-00、LS-01 與 H2PE1 溶解於 THF 中之紫外光-可見光吸收光譜數據 89
表 4-2 染料 LS-00、LS-01 與 H2PE1 溶解於 THF 中之螢光放射光譜數據 92
表 4-3 染料 LS-00 與 LS-01 之螢光量子產率 94
表 4-4 染料 LS-00、LS-01 與 H2PE1 之電化學性質數據 97
表 4-5 染料 LS-00、LS-01 與 H2PE1 之能階數據及計算 99
表 4-6 染料 LS-01 與 H2PE1 元件之光伏性質數據 101
表 4-7 染料 LS-03 與 H2N-Ph-Zn(t-Bu)-Ph-NO2 溶解於 THF 中之紫外光-可見光吸收光譜數據 106
表 4-8 染料 LS-03 與 H2N-Ph-Zn(t-Bu)-Ph-NO2 溶解於 THF 中之螢光放射光譜數據 108
表 4-9 染料 LS-03 之螢光量子產率 110
表 4-10 染料 LS-00、LS-03 與 H2N-Ph-Zn(t-Bu)-Ph-NO2 之電化學性數據 113
表 4-11 染料 LS-03 與 Pt 當陰極之光伏性質數據 115
表 4-12 染料 LS-03 與H2N-Ph-Zn(t-Bu)-Ph-NO2 之能階數據及計算 119

1.美國國家海洋及大氣管理局, National Oceanic and Atmospheric Administration.
2.N. Geographic. Germany Could Be a Model for How We'll Get Power in the future.
3.M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop. Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications, 2015, 23, 1-9.
4.D. M. Chapin, C. S. Fuller and G. L. Pearson. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954, 25, 676-677.
5.D. E. Carlson and C. R. Wronski. Amorphous silicon solar cell. Applied Physics Letters, 1976, 28, 671-673.
6.S. Karg, W. Riess, V. Dyakonov and M. Schwoerer. Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes. Synthetic Metals, 1993, 54, 427-433.
7.Y.-J. Cheng, S.-H. Yang and C.-S. Hsu. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews, 2009, 109, 5868-5923.
8.A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009, 131, 6050-6051.
9.National Renewable Energy Laboratory. NREL efficiency chart.
10.A. E. Becquerel. Mémoire sur les effets électriques produits sous l'influence des rayons solaires. Comptes Rendus des Séances Hebdomadaires, 1839, 9, 561-567.
11.S. Namba and Y. Hishiki. Color Sensitization of Zinc Oxide with Cyanine Dyes. The Journal of Physical Chemistry, 1965, 69, 774-779.
12.R. C. Nelson. Minority Carrier Trapping and Dye Sensitization. The Journal of Physical Chemistry, 1965, 69, 714-718.
13.J. Bourdon. Spectral Sensitization of Chemical Effects in Solids. The Journal of Physical Chemistry, 1965, 69, 705-713.
14.H. Gerischer and H. Tributsch. Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO-Einkristallen. Berichte der Bunsengesellschaft für physikalische Chemie, 1968, 72, 437-445.
15.H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya. Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 1976, 261, 402-403.
16.B. O'Regan and M. Grätzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737-740.
17.M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005, 127, 16835-16847.
18.M. Grätzel. Photoelectrochemical cells. Nature, 2001, 414, 338-344.
19.R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom and B. de Boer. Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years). Polymer Reviews, 2008, 48, 531-582.
20.M. K. Nazeeruddin, R. Humphry-Baker, D. L. Officer, W. M. Campbell, A. K. Burrell and M. Grätzel. Application of Metalloporphyrins in Nanocrystalline Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Langmuir, 2004, 20, 6514-6517.
21.K. Hara, Y. Dan-oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama and H. Arakawa. Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Langmuir, 2004, 20, 4205-4210.
22.P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel. Stable ⩾8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility. Applied Physics Letters, 2005, 86, 123508.
23.G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane. A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2001, 70, 85-101.
24.H. Nusbaumer, J.-E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel. CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. The Journal of Physical Chemistry B, 2001, 105, 10461-10464.
25.A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011, 334, 629-634.
26.S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, F. E. CurchodBasile, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem, 2014, 6, 242-247.
27.K. C. D. Robson, P. G. Bomben and C. P. Berlinguette. Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles. Dalton Transactions, 2012, 41, 7814-7829.
28.林保岑. 應用於染料敏化太陽能電池之有機分子染料與紫質染料的光伏性質研究 國立暨南際大學 應用化學系 碩士論文.
29.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson. Dye-Sensitized Solar Cells. Chemical Reviews, 2010, 110, 6595-6663.
30.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Grätzel. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993, 115, 6382-6390.
31.M. K. Nazeeruddin, P. Pechy and M. Grätzel. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chemical Communications, 1997, 1705-1706.
32.M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society, 2001, 123, 1613-1624.
33.C. Yasuo, I. Ashraful, W. Yuki, K. Ryoichi, K. Naoki and H. Liyuan. Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Japanese Journal of Applied Physics, 2006, 45, L638.
34.M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer and M. Grätzel. Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorganic Chemistry, 1999, 38, 6298-6305.
35.F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel. Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2008, 130, 10720-10728.
36.P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Grätzel. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater, 2003, 2, 402-407.
37.C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin and M. Grätzel. Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano, 2009, 3, 3103-3109.
38.H. L. Anderson. Building molecular wires from the colours of life: conjugated porphyrin oligomers. Chemical Communications, 1999, 2323-2330.
39.Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, K. Gordon, R. Humphry-Baker, M. K. Nazeeruddin and M. Grätzel. Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Films. The Journal of Physical Chemistry B, 2005, 109, 15397-15409.
40.W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel and D. L. Officer. Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2007, 111, 11760-11762.
41.Y.-C. Chang, C.-L. Wang, T.-Y. Pan, S.-H. Hong, C.-M. Lan, H.-H. Kuo, C.-F. Lo, H.-Y. Hsu, C.-Y. Lin and E. W.-G. Diau. A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chemical Communications, 2011, 47, 8910-8912.
42.X. Qian, Y.-Z. Zhu, W.-Y. Chang, J. Song, B. Pan, L. Lu, H.-H. Gao and J.-Y. Zheng. Benzo[a]carbazole-Based Donor−π–Acceptor Type Organic Dyes for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9015-9022.
43.Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang. Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy & Environmental Science, 2015, 8, 3192-3197.
44.K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa and M. Hanaya. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 2015, 51, 15894-15897.
45.J. Jiang, P. Vairaprakash, K. R. Reddy, T. Sahin, M. P. Pavan, E. Lubian and J. S. Lindsey. Hydrophilic tetracarboxy bacteriochlorins for photonics applications. Organic & Biomolecular Chemistry, 2014, 12, 86-103.
46.F. F. de Assis, M. A. B. Ferreira, T. J. Brocksom and K. T. de Oliveira. NIR bacteriochlorin chromophores accessed by Heck and Sonogashira cross-coupling reactions on a tetrabromobacteriochlorin derivative. Organic & Biomolecular Chemistry, 2016, 14, 1402-1412.
47.H.-J. Kim and J. S. Lindsey. De Novo Synthesis of Stable Tetrahydroporphyrinic Macrocycles:  Bacteriochlorins and a Tetradehydrocorrin. The Journal of Organic Chemistry, 2005, 70, 5475-5486.
48.D. Fan, M. Taniguchi and J. S. Lindsey. Regioselective 15-Bromination and Functionalization of a Stable Synthetic Bacteriochlorin. The Journal of Organic Chemistry, 2007, 72, 5350-5357.
49.J. R. Stromberg, A. Marton, H. L. Kee, C. Kirmaier, J. R. Diers, C. Muthiah, M. Taniguchi, J. S. Lindsey, D. F. Bocian, G. J. Meyer and D. Holten. Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells. The Journal of Physical Chemistry C, 2007, 111, 15464-15478.
50.X.-F. Wang, O. Kitao, H. Zhou, H. Tamiaki and S.-i. Sasaki. Efficient Dye-Sensitized Solar Cell Based on oxo-Bacteriochlorin Sensitizers with Broadband Absorption Capability. The Journal of Physical Chemistry C, 2009, 113, 7954-7961.
51.C.-Y. Chen, E. Sun, D. Fan, M. Taniguchi, B. E. McDowell, E. Yang, J. R. Diers, D. F. Bocian, D. Holten and J. S. Lindsey. Synthesis and Physicochemical Properties of Metallobacteriochlorins. Inorganic Chemistry, 2012, 51, 9443-9464.
52.P. Vairaprakash, E. Yang, T. Sahin, M. Taniguchi, M. Krayer, J. R. Diers, A. Wang, D. M. Niedzwiedzki, C. Kirmaier, J. S. Lindsey, D. F. Bocian and D. Holten. Extending the Short and Long Wavelength Limits of Bacteriochlorin Near-Infrared Absorption via Dioxo- and Bisimide-Functionalization. The Journal of Physical Chemistry B, 2015, 119, 4382-4395.
53.T. Higashino, Y. Tsuji, Y. Fujimori, K. Sugiura, S. Ito and H. Imahori. Push–Pull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. Chemistry Letters, 2015, 44, 1395-1397.
54.A. Deronzier, R. Devaux, D. Limosin and J.-M. Latour. An International Journal Devoted to all Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological ElectrochemistryPoly(pyrrole-metallotetraphenylporphyrin)-modified electrodes. Journal of Electroanalytical Chemistry, 1992, 324, 325-337.
55.I. De Gregori, M. Carrier, A. Deronzier, J. C. Moutet, F. Bedioui and J. Devynck. Incorporation of anionic cobalt porphyrin by anion exchange into polypyrrole films containing alkylammonium groups. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1567-1572.
56.J. Hayon, A. Raveh and A. Bettelheim. An International Journal Devoted to all Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological ElectrochemistryElectrocatalytic properties of chemically polymerized films of cobalt, iron and manganese tetrakis(o-aminophenyl)porphyrins. Journal of Electroanalytical Chemistry, 1993, 359, 209-221.
57.M. Khorasani-Motlagh, M. Noroozifar, A. Ghaemi and N. Safari. Iron(III) octaethylporphyrin chloride supported on glassy carbon as an electrocatalyst for oxygen reduction. Journal of Electroanalytical Chemistry, 2004, 565, 115-120.
58.R. Paolesse, C. D. Natale, M. Burgio, E. Martinelli, E. Mazzone, G. Palleschi and A. D’Amico. Porphyrin-based array of cross-selective electrodes for analysis of liquid samples. Sensors and Actuators B: Chemical, 2003, 95, 400-405.
59.J. Chen, D. L. Officer, J. M. Pringle, D. R. MacFarlane, C. O. Too and G. G. Wallace. Photoelectrochemical Solar Cells based on Polyterthiophenes Containing Porphyrins using Ionic Liquid Electrolyte. Electrochemical and Solid-State Letters, 2005, 8, A528-A530.
60.林洧竹. 苝雙亞醯胺之電化學及電聚合反應研究 國立暨南國際大學 應用化學系 碩士論文.
61.C.-Y. Lin, Y.-C. Hung, C.-M. Liu, C.-F. Lo, Y.-C. Lin and C.-L. Lin. Synthesis, electrochemistry, absorption and electro-polymerization of aniline-ethynyl metalloporphyrins. Dalton Transactions, 2005, 396-401.
62.P. A. Liddell, M. Gervaldo, J. W. Bridgewater, A. E. Keirstead, S. Lin, T. A. Moore, A. L. Moore and D. Gust. Porphyrin-Based Hole Conducting Electropolymer. Chemistry of Materials, 2008, 20, 135-142.
63.S.-C. Huang and C.-Y. Lin. Reductive electropolymerization of N-methyl-3-pyridylethynyl-porphyrins. Chemical Communications, 2015, 51, 519-521.
64.K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga and H. Arakawa. Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Solar Energy Materials and Solar Cells, 2003, 80, 47-71.
65.M. Kasha. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiation Research, 1963, 20, 55-70.
66.K. Sonogashira, Y. Tohda and N. Hagihara. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Letters, 1975, 16, 4467-4470.
67.K. Rurack and M. Spieles. Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600−1000 nm. Analytical Chemistry, 2011, 83, 1232-1242.
68.E. Yang, C. Kirmaier, M. Krayer, M. Taniguchi, H.-J. Kim, J. R. Diers, D. F. Bocian, J. S. Lindsey and D. Holten. Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments. The Journal of Physical Chemistry B, 2011, 115, 10801-10816.
69.C.-Y. Lin, C.-F. Lo, M.-H. Hsieh, S.-J. Hsu, H.-P. Lu and E. W.-G. Diau. Preparation and Photovoltaic Characterization of Free-Base and Metallo Carboxyphenylethynyl Porphyrins for Dye-Sensitized Solar Cells. Journal of the Chinese Chemical Society, 2010, 57, 1136-1140.
70.Y. Tang, Y. Wang, X. Li, H. Ågren, W.-H. Zhu and Y. Xie. Porphyrins Containing a Triphenylamine Donor and up to Eight Alkoxy Chains for Dye-Sensitized Solar Cells: A High Efficiency of 10.9%. ACS Applied Materials & Interfaces, 2015, 7, 27976-27985.
71.G. Jones, W. R. Jackson, C. Y. Choi and W. R. Bergmark. Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. The Journal of Physical Chemistry, 1985, 89, 294-300.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊