跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/08 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許碩洋
研究生(外文):Hsu, Shuo-Yang
論文名稱:好/厭氧環境整治工法於滯水層氣體分布調查技術研發
論文名稱(外文):Development of Air Content Distribution Investigation Technology in Aquitard During Groundwater Remediation
指導教授:林志平林志平引用關係
指導教授(外文):Lin, Chih-Ping
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:跨孔透地雷達時域反射法氣泡量測
外文關鍵詞:Cross-hole Ground Penetration RadarTime Domain ReflectometerAir Content Measuring
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
生物整治為目前進行汙染場址整治常用之技術,於現地實施電極電解促進生物復育之整治方法為新穎之技術,其主要協助提供好氧厭氧環境以利好氧菌與厭氧菌對汙染物進行降解,達到破壞、轉化或移動、遲滯汙染物之整治目標。此工法相較於調查汙染物之降解程度,直接調查整治過程中之氣體產生之範圍,更可快速達到整治區域界定的方式。
經文獻回顧,以介電度量測氣體含量為高潛力之技術,有鑑於此,本研究利用具發展性之時域反射技術(TDR)系統分析方法,採用單棒式三叉感測器,訊號分析採用頻率域相位速度分析法,可快速、便捷且定量於監測井中進行量測氣體含量;並提出時序性之跨孔透地雷達於氣體含量調查之分析方法,透過孔內透地雷達觀察飽和土體內2維剖面之氣體含量變化。
室內試驗顯示,無論是TDR技術或是時序性跨孔透地雷達技術皆具有其可行性,TDR技術進行介電度量測具有定量調查水中氣體含量之潛力,而時序性之介電度變化可有效監測土體中氣體含量的變化。而現場資料顯示TDR量測時其感應範圍超過監測井(2”PVC管)進入回填材料範圍,此結果雖不利於定量量測,但可更加明確的顯示氣體存在的位置(根據現場氣體產生之工程師表示,監測井中不易存在氣體,反而回填砂之位置較為良好);而時序性跨孔透地雷達之資料雖受限於電解試驗的失誤而未明確獲得氣體分布狀態的改變,但由此時序性資料亦可確實達到監測土體中氣體變化之目的。
關鍵字:跨孔透地雷達、時域反射法、氣泡量測

In-situ bio-remediation is the current practice of groundwater contamination treatment, while in-situ electrolysis conducted to enhance biological repopulation is amongst the new bio-remediation techniques. This bio-remediation method mainly assist in creating both aerobic and anaerobic environments to boost the growth of microorganisms and hence the pollutant disintegration. Efficiency of this treatment is better assessed by investigating the air bubbles distribution within the aquitard instead of determining the disintegration degree of pollutants, since the former method provided faster and extensive bio-remediation profile delineation and evaluation.
Literature review revealed that dielectric constant measurement on multiphase material has high potential to measure the air concentration. This study hence designed an air content monitoring system involving time-domain reflectometry (TDR) technique, by developing a rod-shape probe with three conductor rods and utilizing frequency domain phase velocity (FDPV) analysis method. The aforementioned TDR method provided a quick and convenient qualitative air content measurement within monitoring wells. This study also proposed a time-lapsed cross-hole ground penetrating radar (GPR) in underground air content investigation and generated a two-dimensional profile of air content variation in saturated soils.
Laboratory tests demonstrated that both TDR technique and time-lapse cross-hole GPR are feasible in air content monitoring. TDR technique had a great potential in air content quantification within water mass by dielectric constant measurement, while time-lapse TDR monitoring can effectively monitor air content variation within saturated soil mass. Field measurement data showed that the detection radius of TDR exceeded the diameter of the monitoring well casing (2 inches PVC tube) and detected the backfill material layer. Although the result of quantitative measurement is unfavorable, this method can actually identify the presence of air bubbles within backfill layer as one of the on-site engineer mentioned that air bubbles existed in backfill layer easier than within monitoring well. Whereas the air content distribution measurement of time-lapse cross-hole GPR was inconclusive due to a failure in electrolysis operation, however this set of time-lapse monitoring data has achieved the aim of air content variation monitoring in soil.

Keyword: Cross-hole Ground Penetration Radar, Time Domain Reflectometer, Air Content Measuring

摘要 I
Abstract III
致謝 VI
目錄 VII
圖目錄 X
表目錄 XIV
一、 前言 1
1.1 研究動機 1
1.2 研究目的 3
1.3 內容架構 3
二、 文獻回顧 4
2.1 水中溶氧量量測 4
2.2 氣泡量測方法技術介紹與評析 5
2.2.1 聲學與光學法 6
2.2.2 導電度法 9
2.2.3 電磁法 11
2.2.4 問題評析 14
2.3 滯水層氣體含量之介電度行為 15
2.3.1 混合物之介電度行為 15
2.3.2 時序性介電度量測概念 19
2.4 時域反射法介紹 21
2.4.1 時域反射法量測技術 22
2.4.2 視介電度分析法 24
2.4.3 導電度分析法 28
2.5 孔內透地雷達介紹與分析方法 30
2.5.1 孔內透地雷達 30
2.5.2 孔內透地雷達影像剖面之應用與分析流程 33
三、 研究方法 36
3.1 研究流程 36
3.2 氣水混合物介電度行為探討與TDR感測器設計 37
3.2.1 氣水混合物室內量測試驗配置 37
3.2.2 室內試驗儀器、材料 39
3.2.3 TDR 感測器量測定量驗證 42
3.2.4 TDR感測器設計考量與評估 44
3.3 介電度行為於滯水層(三相體混和物)之探討與應用 45
3.3.1 室內試驗儀器、材料與配置 45
3.3.2 時序性跨孔透地雷達之可行性評估 48
3.4 現地試驗之配置 54
四、 試驗結果與討論 59
4.1 TDR氣體含量量測之系統研發 59
4.1.1 視介電度分析方法於氣體含量量測之影響 59
4.1.2 感測器型式於氣體含量量測之影響 63
4.1.3 TDR感測器之原型設計與測試 66
4.2 氣水混合物之行為探討結果 70
4.2.1 單棒式三叉感測器製作與率定 70
4.2.2 單棒式三叉感測器於氣水混合物之行為 76
4.2.3 室內試驗氣泡量測結果 78
4.2.4 TDR之定量量測結果 79
4.3 現地試驗結果 82
五、 結論與建議 92
5.1 結論 92
5.2 建議 93
參考文獻 94

CAIN, P. (1978). "Measurements within Self-Aerated Flow on a Large Spillway." Research Report No. 78-18, Univ. of Canterbury, New Zealand.
Chung, C.-C; Lin, C.-P. (2011). High Concentration Suspended Sediment Measurements using Time Domain Reflectometry. Journal of Hydrology, 401, P.134-P.144.
Dobson, M.C., Ulaby, F. F., Hallikainen, M.T., and El-Rayes, M.A. (1985), “Microwave dielectric behavior of wet soil-part II: Dielectric mixing models,” IEEE Trans. Geosci. Remote Sens. 23, 35–46.
Heimovaara, T. J. (1994). “Frequency Domain Analysis of Time Domain Reflectometry Waveforms: 2 A four-component complex dielectric mixing model for soils,” Water Resources Research, Vol. 30, No. 2, pp. 201-209
Ledieu, J., P. De Ridder, P. De Clerck, and S. Dautrebande. (1986). A method for measuring soil moisture content by time domain reflectometry. J. Hydrology (Amsterdam) 88:319–328.
Lin, C.P. (1999). Time domain reflectometry for soil properties. Ph.D. Thesis, Purdue University, West Lafayette, IN.
Lin, C.-P. (2003), "Frequency domain versus traveltime analyses of tdr waveforms for soil moisture measurements," Soil Sci. Soc. Am. J., 67(3), 720-729.
Lin, C.- P.; Tang, S.-H., and Chung, C.-C. (2006), “Development of TDR penetrometer through theoretical and laboratory investigations: 1. Measurement of soil dielectric permittivity”. Geotech. Test. J., 29(4), 306-313.
Lin, C.-P., Chung, C.-C., and Tang, S.-H. (2007), “Accurate TDR measurement of electrical conductivity accounting for cable resistance and recording time,” Soil Sci. Soc. Am. J., 71(4), 1278-1287.
Lin, C.-P., Chung, C.-C., Huisman, J. A., and Tang, S.-H., (2008) “Clarification and calibration of reflection coefficient for electrical conductivity measurement by time domain reflectometry,” Soil Sci. Soc. Am. J., 72, 1033-1040.
Naghash, M., 1994. Void fraction measurement techniques for gas–liquid bubbly flows in closed conduits; a literature review. In:Pugh, C.A. (Ed.), Fundamentals and Advancements in Hydraulic Measurements and Experimentation. American Society of Civil Engineers, Buffalo, NY, pp. 278– 288.
Nakasone, H., 1987. Study of aeration at weirs.
Reynolds J.M., “ An introduction to applied and environmental geophysics”, Wiley Inc., 1997.
Siddiqui, S.I. and Drnevich, V.P. (1995), Use of Time Domain Reflectometry for the Determination of Water Content and Density of Soil, FHWA/IN/JHRP-95/9, Purdue University.
Topp, G. C., Davis, J. L., and Annan, A. P. (1980), “Electromagnetic determination of soil water content and electrical conductivity measurement using time domain reflectometry,” Water Resour. Res., 16 (3), 574~582.
Vallé, B. L., and G. B. Pasternack (2002), TDR measurements of hydraulic jump aeration in the South Fork of the American River, California, Geomorphology, 42, 153–165.
高千平(2001), 斷層攝影應用於透地雷達測勘之研究。國立中央大學應用地質研究所,碩士論文。
林俊宏(2013), 應用時域反射法於碾壓土壤檢測之電學性質量測技術改良。國立交通大學土木工程學系博士論文。
林志平、林俊宏、劉興昌、鐘志忠(2014), 現場底泥電學電學性質感測貫入器研發,環保署土壤及地下水污染整治基金補助研究與模場試驗專案。
陳偉豪(2014), 藉由光學技術測量氣泡粒徑分佈和體積分率。國立成功大學水利及海洋工程研究所,碩士論文。
梁書豪、簡華逸、郭育嘉、楊宗翰、高志明, 土壤及地下水整治技術發展簡介。國立中山大學環境工程研究所。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top