(18.204.2.190) 您好!臺灣時間:2021/04/19 07:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳翠
研究生(外文):LINGGA FADYA PUTRI
論文名稱(外文):Finite Element Analysis of Flexural Strengthening of Reinforced Concrete Beam by FRP
指導教授:王仲宇
指導教授(外文):Chung-Yue Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:122
中文關鍵詞:鋼筋混凝土樑(RC樑)鋼筋完全粘結粘結滑移鋼纖維聚合物(FRP)剝離破壞分層雙懸臂(DCB)終端彎曲(ENF)頸縮LS-DYNA
外文關鍵詞:reinforced concrete beam (RC beam)reinforcement bar in concreteperfect bondbond-slipfiber reinforced polymer (FRP)debonding failuredelaminationdouble cantilever (DCB)end-notched flexure (ENFtie-breakLS-DYNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
近來愈多鋼筋混凝土使用鋼纖維聚合物(FRP)以提高強度,並增加極限載重,不讓此達到破壞行為。此研究便是利用LS-DYNA軟體,以有限元(FE)分析未補強與FRP補強鋼筋混凝土樑的所有行為,並與實驗做比對。其中,未補強樑有四個試樣,主要分為兩種形式─完全粘接式與粘結滑移式,並在靜載重下,施加彎矩力在四個節點上。荷載-撓度曲線、開裂擴展與FRP剝離中,將數值結果與分析的文獻相比較,發現未補強樑之完全粘接的數值模擬與文現相同,且更易模擬分析,但分析模型時間卻比粘結滑移式久。然而,在有限元建模的FRP補強鋼筋混凝土樑卻是有問題的。在LS-DYNA中,以有限元建模的FRP材料在粘結模型上很難取得適當的精確度與可靠度來驗證頸縮接觸(意謂FRP-混凝土的粘結)。雙懸臂梁(DCB)和終端彎曲(ENF)的模擬可以分析模型I與II,在頸縮接觸的分層斷裂擴展行為。從這些測試中,發現模型I是可靠的,而模式II是不準確的。進一步以抗剪切試驗,驗證FRP混凝土的的粘結性能,得到的數值模擬與實驗結果之間的行為類似。但需要更深的調查,因為其兩者間的偏差超過20%。
Recently, the use of Fiber Reinforced Polymer (FRP) in the strengthening of Reinforced Concrete (RC) has become popular to increase the ultimate load carrying capacity of RC, but it also has unwanted failures. In this research, Finite Element (FE) analysis using LS-DYNA software was conducted with the aim of investigating overall behavior of the un-strengthened and FRP-strengthened beam which experimentally tested by Wang et al. There are four specimens of un-strengthened beams which divide into 2 major types i.e. prefect bond and bond slip model which were arranged and tested under static loading of four point bending loads. The numerical result in terms of load-deflection curve, crack propagation, and FRP debonding were discussed and compared with experimental and analytical literature. The numerical simulation of un-strengthened beam reveals that perfect bond type has identical behavior with experimental result, easier to be simulated, but less efficient in running time the model than bond slip type. Whereas, conducting of FRP-strengthened beam in the finite element modeling has a problem. Literally, the FE test of FRP material exhibit in accurate and reliable results compared with analytical calculation. But, it is quite hard to obtain the proper fundamental concept model in order to validate the tie-break contact (represent bond between FRP-concrete) modeling in LS-DYNA. The simulation of double cantilever beam (DCB) and end-notched flexure (ENF) are conducted to analyze the progressive growth of delamination of tie-break contact under Mode I and Mode II fracture, respectively. From these test, it reveals that Mode I fracture is reliable, while Mode II fracture is not accurate. When further validation modeling of bond behavior between FRP-concrete i.e. shear bond test of FRP attached to concrete is conducted. The similar behavior between numerical simulation and experimental result was obtained. But it needed deeper investigation, since the result was not closed enough with deviation between numerical and experimental result can be exceed of 20%.
摘要……………………………………………………………………………………………..i
ABSTRACT……………………………………………………………………………….......ii
ACKNOWLEDGMENT ..................................................................................................... iii
LIST OF CONTENT .......................................................................................................... iv
LIST OF TABLE ............................................................................................................... vii
LIST OF FIGURE .............................................................................................................. ix
NOTATION………………………………………………………………………………….xii
CHAPTER I: INTRODUCTION ........................................................................................ 1
1.1 BACKGROUND .................................................................................................... 1
1.2 RESEARCH OBJECTIVES.................................................................................. 3
1.3 RESEARCH SCOPE AND LIMITATION .......................................................... 4
1.4 OUTLINE OF THESIS ......................................................................................... 4
CHAPTER II: LITERATURE REVIEW ........................................................................... 5
2.1 INTRODUCTION ................................................................................................. 5
2.2 STRESS STRAIN BEHAVIOR OF CONCRETE AND STEEL ......................... 5
2.2.1 Concrete ........................................................................................................... 5
2.2.2 Steel Reinforcement .......................................................................................... 8
2.3 FLEXURAL STRENGTH BEHAVIOR OF RC BEAM.................................... 10
2.4 FLEXURAL STRENGTHENING OF RC BEAM WITH FRP......................... 14
2.5 FLEXURAL FAILURE MODES OF FRP-STRENGTHENED RC BEAM ..... 19
2.6 RIVIEWED OF DEBONDING STRENGTH MODELS ................................... 22
2.7 EXPERIMENTAL REVIEWED ........................................................................ 23
CHAPTER III: FINITE ELEMENT MODELLING IN LS-DYNA ................................ 27
3.1 INTRODUCTION ............................................................................................... 27
3.2 OVERVIEW OF HYPERMESH ........................................................................ 28
v
3.3 OVERVIEW OF LS-DYNA ................................................................................ 29
3.4 MATERIAL CONSTITUTIVE MODELS ......................................................... 29
3.4.1 Concrete ......................................................................................................... 29
3.4.2 Steel Reinforcement ........................................................................................ 33
3.4.3 Fiber Reinforced Polymer ............................................................................... 33
3.4.4 Loading Plate and Support .............................................................................. 36
3.5 BONDING MODEL ............................................................................................ 37
3.5.1 Bonding between Steel and Concrete .............................................................. 37
3.5.2 Epoxy or Concrete – FRP interface ................................................................. 40
3.6 EROSION FEATURE ......................................................................................... 42
3.7 MATERIAL TEST VALIDATION .................................................................... 44
3.7.1 Finite element modelling of Concrete Compression Test and Result ............... 44
3.7.1.1 Single Element Modelling of Concrete Compression Test ........................ 44
3.7.1.2 Structure Modeling of Concrete Compression Test .................................. 47
3.7.2 Finite Element Modeling of Steel Reinforcement Tensile Test ........................ 51
3.7.3 Finite Element Modelling of Composite Element ............................................ 55
3.8 CONTACT MODELING VALIDATION .......................................................... 58
CHAPTER IV: FINITE ELEMENT MODELING DEVELOPMENT OF UN-STRENGTHENED AND FRP-STRENGTHENED RC BEAM ...................................... 64
4.1 INTRODUCTION ............................................................................................... 64
4.2 MODEL GEOMETRY ........................................................................................ 65
4.3 MATERIAL MODELLING ................................................................................ 68
4.4 CONTACT MODELING AND EROSION ........................................................ 70
4.5 BOUNDARY CONDITIONS .............................................................................. 71
4.6 LOADING STRATEGY ...................................................................................... 72
CHAPTER V: RESULTS AND DISCUSSIONS .............................................................. 73
5.1 INTRODUCTION ............................................................................................... 73
vi
5.2 CRACKING BEHAVIOR AND FAILURE MODE OF UN-STRENGTHENED RC BEAMS ..................................................................................................................... 74
5.3 LOAD-DEFLECTION BEHAVIOR OF UN-STRENGTHENED RC BEAMS 85
5.4 RESULT OF FRP-STRENGTHENED RC BEAMS .......................................... 93
CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS .................................. 96
6.1 CONCLUSIONS .................................................................................................. 96
6.2 RECOMMENDATIONS ..................................................................................... 97
REFERENCES………………………………………………………………………………99
APPENDIX A: SHEAR BOND THEST OF FRP ATTACHED TO CONCRETE ....... 102
Abu-Odeh, A. (2006). Application of new concrete model to roadside safety barriers. Paper presented at the Proc. of the 9th International LS-DYNA Users’ Conference.
ACI, C. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary.
Alfano, G., & Crisfield, M. (2001). Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International journal for numerical methods in engineering, 50(7), 1701-1736.
Aram, M. R., Czaderski, C., & Motavalli, M. (2008). Debonding failure modes of flexural FRP-strengthened RC beams. Composites part B: engineering, 39(5), 826-841.
Bakis, C. E., Ganjehlou, A., Kachlakev, D. I., Schupack, M., Balaguru, P., Gee, D. J., . . . Gentry, T. R. (2002). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Reported by ACI Committee, 440(2002).
Boresi, A. P., Schmidt, R. J., & Sidebottom, O. M. (1993). Advanced mechanics of materials (Vol. 6): Wiley New York.
Brannon, R. M., & Leelavanichkul, S. (2009). Survey of four damage models for concrete. Sandia Laboratories, Albuquerque. Sandia Report No. SAND, 5544.
Buyukozturk, O., Gunes, O., & Karaca, E. (2004). Progress on understanding debonding problems in reinforced concrete and steel members strengthened using FRP composites. Construction and Building Materials, 18(1), 9-19.
Buyukozturk, O., & Hearing, B. (1998). Failure behavior of precracked concrete beams retrofitted with FRP. Journal of composites for construction, 2(3), 138-144.
Chang, F.-K., & Chang, K.-Y. (1987). A progressive damage model for laminated composites containing stress concentrations. Journal of composite materials, 21(9), 834-855.
Chen, W.-F., & Han, D.-J. (2007). Plasticity for structural engineers: J. Ross Publishing.
Elsanadedy, H. M., Almusallam, T. H., Alsayed, S. H., & Al-Salloum, Y. A. (2013). Flexural strengthening of RC beams using textile reinforced mortar–Experimental and numerical study. Composite Structures, 97, 40-55.
Hallquist, J. O. (2007). LS-DYNA keyword user’s manual. Livermore Software Technology Corporation, 970.
Harper, P. W., & Hallett, S. R. (2008). Cohesive zone length in numerical simulations of composite delamination. Engineering Fracture Mechanics, 75(16), 4774-4792.
Head, P. (1996). Advanced composites in civil engineering-a critical overview at this high interest, low use stage of development. Paper presented at the PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCED COMPOSITE MATERIALS IN BRIDGES AND STRUCTURES, ACMBS-II, MONTREAL 1996.
Hollaway, L. C., & Leeming, M. (1999). Strengthening of reinforced concrete structures: Using externally-bonded FRP composites in structural and civil engineering: Elsevier.
Hosseini, A., & Mostofinejad, D. (2013). Experimental investigation into bond behavior of CFRP sheets attached to concrete using EBR and EBROG techniques. Composites Part B: Engineering, 51, 130-139.
100
Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Journal of the Structural Division.
Kwak, H.-G., & Filippou, F. C. (1990). Finite element analysis of reinforced concrete structures under monotonic loads: Department of Civil Engineering, University of California Berkeley, CA, USA.
Meier, U. (1992). Carbon fiber-reinforced polymers: modern materials in bridge engineering. Structural Engineering International, 2(1), 7-12.
Meier, U., Deuring, M., Meier, H., & Schwegler, G. (1993). Strengthening of structures with advanced composites. Alternative materials for the reinforcement and prestressing of concrete, 1.
Meier, U., & Kaiser, H. (1991). Strengthening of structures with CFRP laminates. Paper presented at the Advanced composites materials in civil engineering structures.
Meier, U., & Winistorfer, A. (1995). 55 RETROFITTING OF STRUCTURES THROUGH EXTERNAL BONDING OF CFRP SHEETS. Paper presented at the Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium.
Moutoussamy, L., Herve, G., & Barbier, F. (2011). Qualification of* Constrained_Lagrange_In_Solid command for steel/concrete interface modeling. Paper presented at the 8th European LS-DYNA Conference.
Neubauer, U., & Rostásy, F. (2001). Debonding mechanism and model for CFRP plates as external reinforcement for concrete members. Paper presented at the International Conference Composites in Construction CCC 2001.
Osborne, M. (2012). Single-Element Characterization of the LS-DYNA MAT54 Material Model. University of Washington.
Park, R., & Paulay, T. (1975). Reinforced Concrete Structure, John Wiley&Sons. Inc., New York.
Rabbat, B., & Russell, H. (1985). Friction coefficient of steel on concrete or grout. Journal of Structural Engineering, 111(3), 505-515.
Raoof, M., & Hassanen, M. (2000). Peeling failure of reinforced concrete beams with fibre-reinforced plastic or steel plates glued to their soffits. Proceedings of the institution of civil engineers-structures and buildings, 140(3), 291-305.
Saadatmanesh, H., & Ehsani, M. R. (1991). RC beams strengthened with GFRP plates. I: Experimental study. Journal of Structural Engineering, 117(11), 3417-3433.
Schwer, L. (2014). Modeling Rebar: The Forgotten Sister in Reinforced Concrete Modeling. Constitutive Modeling, 13.
Schwer, L. E., & Malvar, L. J. (2005). Simplified concrete modeling with* MAT_CONCRETE_DAMAGE_REL3. JRI LS-Dyna User Week, 49-60.
Shi, Y., Li, Z.-X., & Hao, H. (2009). Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns. Structural Engineering and Mechanics, 32(2), 251-267.
Smith, S. T., & Teng, J. (2002). FRP-strengthened RC beams. I: review of debonding strength models. Engineering Structures, 24(4), 385-395.
101
Song, K., Dávila, C. G., & Rose, C. A. (2008). Guidelines and parameter selection for the simulation of progressive delamination.
Teng, J., & Chen, J. (2007). Debonding failures of RC beams strengthened with externally bonded FRP reinforcement: behaviour and modelling. Paper presented at the Proceedings of the First Asia-Pacific Conference on FRP in Structures (APFIS 2007).
Teng, J. G., Chen, J.-F., Smith, S. T., & Lam, L. (2002a). FRP: strengthened RC structures. Frontiers in Physics, 1.
Teng, J. G., Chen, J.-F., Smith, S. T., & Lam, L. (2002b). FRP: strengthened RC structures (Vol. 1).
Van Mier, J., Shah, S., Arnaud, M., Balayssac, J., Bascoul, A., Choi, S., . . . Gobbi, M. (1997). Strain-softening of concrete in uniaxial compression. Materials and Structures, 30(4), 195-209.
Wade, B., Feraboli, P., & Osborne, M. (2012). Simulating laminated composites using LS-DYNA material model MAT54 part I:[0] and [90] ply single-element investigation. Paper presented at the FAA Joint Advanced Materials and Structures (JAMS) Centre of Excellence, Technical Review Meeting, Maryland.
Wang, C.-Y., & Ling, F.-S. (2000). Retrofitting of Cracked RC Beams By Externally Patched Flexible FRP Tow-Sheets II: Prediction Models of Debonding Failure. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 12(2), 277-289.
Wang, C.-Y., Sun, M.-C., & Ling, F.-S. (2000). Retrofitting of Cracked RC Beams By Externally Patched Flexible FRP Tow-Sheets I: Experimental Study. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 12(1), 113-122.
Wang, C., & Ling, F. (1998). Prediction model for the debonding failure of cracked RC beams with externally bonded FRP sheets. Paper presented at the Second International Conference on Composites in Infrastructure.
Wu, Y., Crawford, J. E., & Magallanes, J. M. (2012). Performance of LS-DYNA concrete constitutive models. Paper presented at the 12th International LS-DYNA Users Conference.
Zhang, S., Raoof, M., & Wood, L. (1995). Prediction of peeling failure of reinforced concrete beams with externally bonded steel plates. Proceedings of the Institution of Civil Engineers. Structures and buildings, 110(3), 257-268.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔