(3.237.20.246) 您好!臺灣時間:2021/04/15 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林亭均
研究生(外文):Ting-Chun Lin
論文名稱:通用土壤流失公式之覆蓋管理因子與空間資料關係建置
指導教授:蔡富安蔡富安引用關係
指導教授(外文):Fuan Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:114
中文關鍵詞:覆蓋管理因子通用土壤流失公式空間分析Minnaert Correction半變異元演算法資料探勘
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
世界各地廣泛使用的通用土壤流失公式,為一描述土壤侵蝕過程的數學模型。此公式計算侵蝕造成土壤流失量所使用的六個參數中,覆蓋管理因子 (C-factor) 與土地使用情形有關,其常用數值從0.001至1,達千倍差異,因此對通用土壤流失公式計算影響甚鉅。過去估算覆蓋管理因子的方式包括:現地實驗、以物理參數模擬、使用土地利用類別賦予C值轉換表進行估算,以及以植被指標與覆蓋管理因子之關係方程式計算而得。然而上述之覆蓋管理因子建置方式除資料獲取及更新不易外,其估算合理性也有疑義。故本研究利用衛星影像等相關空間資料,以資料探勘方式,建構一套C值推估模型,進以計算土壤沖蝕造成之流失量。
本研究以石門水庫集水區為研究區域,本區域主要土地利用類別為森林。本研究以SPOT-4、SPOT-5衛星影像、10公尺網格數值地形模型,及其他相關空間資料與地質資訊推估2004年至2008年之覆蓋管理因子。SPOT衛星影像已經過簡易幾何校正,及有效減少向陽面、背陽面造成之同物異譜情形之Minnaert correction。然後,本研究以Gray Level Co-occurrence Matrix計算影像之紋理指標以作為資料探勘之條件屬性之一,萃取空間資料特性。接著,本研究以決策樹演算法將資料進行初步資料探勘,並於此步驟中考慮條件屬性的優先採用順序以及決策因子數量的優化,以建置更優化之資料探勘模型。最後,本研究使用隨機森林演算法,利用9種決策因子估算研究區域之覆蓋管理因子。
研究結果顯示,資料探勘建置模型推估之覆蓋管理因子之整體精度為73 % - 79%,kappa為0.7-0.758。而根據資料探勘成果,覆蓋管理因子計算成果與2002年土地利用資料之整體一致性 (overall agreement) 為60.5% - 62.4%。依本研究推估之覆蓋管理因子,考慮泥沙遞移率後,所估算之砂土量為 74.032 - 129.756(公噸/公頃-年),對照政府公告之石門水庫泥砂沉積量與清淤量(dredging),本研究估算之成果為一合理且相近之數值。

The Universal Soil Loss Equation (USLE) is a widely used mathematical model that describes soil erosion processes. Among six different soil erosion risk factors of the equation, the cover-management factor (C-factor) is related to the land use type. Commonly used values of C-factor are from 0.001 to 1, so C-factor might cause a thousandfold difference in USLE calculation. The traditional methods for estimating C-factors are in situ experiments, soil physical parameters models, look up tables with land use map and regression equations between vegetation indices and C-factors. However, the methods described above have limitations in data acquisitions or updating; they may also result in unreasonable estimations. Thus, this research tries to construct a relationship between C-factor and spatial data with a data mining algorithm.
The study area is Shimen reservoir watershed in Taiwan. The major land cover here is forest. The SPOT-4, SPOT-5 images, 10m DEM, a land use map and other spatial data were used in this research. The SPOT images were processed with basic radiometric correction and topographic correction with Minnaert constant, which can reduce the difference of apparent radiance between phototropic and apheliotropic regions. After that, Gray Level Co-occurrence Matrix (GLCM) was used to build statistical feature indicators for data mining. A decision tree classifier was used to rank influential conditional attributes in the preliminary data mining. Then, factor simplification and separation were considered to optimize the model and the random forest classifier was used to analyze 9 simplified factor groups.
The overall accuracy of data mining model check points is about 73% - 79% with a kappa value of 0.7-0.758. According to the analysis results, the overall agreement between the look-up table approach and the data mining generated C-factor is about 60.5% - 62.4%. The calculated total soil erosion amount in 2004-2008 according to the data mining results is about 74.032 - 129.756 ton/ha-year with the sediment delivery ratio and correction coefficient. Comparing with the sediment and dredging data published by the Shimen watershed administration authority, the experimental results indicated that using spatial analysis to determine C-factor can produce more reasonable soil erosion estimation.

摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1 研究動機與目的 1
1.2 研究方法及架構 2
第二章 文獻回顧 4
2.1 通用土壤流失公式 4
2.2 資料探勘 7
第三章 研究方法 9
3.1 影像前處理之地形校正 10
3.2 資料探勘 15
3.2.1 紋理指標計算 17
3.2.2 資料探勘模型建置 22
3.3 通用土壤流失公式運算 31
第四章 研究成果與分析 39
4.1 研究區域與資料介紹 39
4.2 地形校正成果 41
4.3 紋理指標建置 54
4.4 資料探勘初步成果與改良 58
4.5 覆蓋管理因子之計算成果 69
4.6 土壤流失量之計算與比較 71
第五章 結論與建議 77
參考文獻 79
附錄一 88
附錄二 91


Alexandridis, T. K., Sotiropoulou, A. M., Bilas, G., Karapetsas, N., and Silleos, N. G., 2015. The Effects of Seasonality in Estimating the C‐Factor of Soil Erosion Studies, Land Degradation & Development, Vol. 26, No. 6, pp. 596-603.
Conners, R. W. and Harlow, C. A., 1980. A Theoretical Comparison of Texture Algorithms, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No.3, pp. 204-222.
Du Buf, J. M. H., Kardan, M., and Spann, M., 1990. Texture Feature Performance for Image Segmentation, Patern Recognition, Vol. 23, pp.291-309.
Foster, G. R. and Wischmeier, W., 1974. Evaluating Irregular Slopes for Soil Loss Prediction. Transactions of the ASAE, 17(2), 305-0309.
Foster, G. R., Simanton, J. R., Renard, K. G., Lane, L. J., and Osborn, H. B., 1981. Discussion of "Application of the Universal Soil Loss Equation to Rangelands on a Per-Storm Basis," by Trieste and Gifford in Journal of Range Management, Vol. 33, pp. 66-70., Journal of Range Management, Vol. 34, No. 2, pp. 161-165.
Fotheringham, S. and Wegener, M., 1999. Spatial Models and GIS: New and Potential Models, Vol. 7 of GIS Data, Taylor and Francis: London, England.
Gabriels, D., Ghekiere, G., Schiettecatte, W., and Rottiers, I., 2003. Assessment of USLE Cover-Nanagement C-Factors for 40 Crop Rotation Systems on Arable Farms in the Kemmelbeek Watershed, Belgium. Soil and Tillage Research, Vol. 74, No. 1, pp. 47-53.
Gonzalez, R. C., and Woods, R. E., 2002. Digital Image Processing, 2nd Edition, Prentice Hall, New Jersey.
Griffin, M. L., Beasley, D. B., Fletcher, J. J. and Foster, G. R., 1988, Estimating Soil Loss on Topographically Nonuniform Field and Farm Units. Journal of Soil and Water Conservation, Vol. 43, pp. 326-331.
Grossman, R. L., Kamath, C., Kegelmeyer, P., Kumar, V., and Namburu, R. (Eds.)., 2013. Data Mining for Scientific and Engineering Applications, Vol. 2, Springer Science & Business Media.
Gunn, R. and Kinzer, G. D., 1949. The Terminal Velocity of Fall for Water Droplets in Stagnant Air, Journal of Meteorology, Vol. 6, No. 4, pp. 243-248.
Hand, D. J., Mannila, H., and Smyth, P., 2001. Principles of Data Mining. MIT press.
Haralick, R. M., Shanmugan, K., and Dinstein, I., 1973. Texture Features for Image Classification, IEEE Trans. Sys. Man Cyber, Vol. 3, No. 6, pp. 610-621.
Hastie, T., Tibshirani, R., and Friedman, J. H., 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, New York: Springer.
Julesz, B., 1975. Experiments in the Visual Perception of Texture, Scientific American, No. 232, pp. 34-43.
Karaburun, A., 2010. Estimation of C Factor for Soil Erosion Modeling Using NDVI in Buyukcekmece Watershed, Ozean Journal of Applied Science, Vol. 3. No. 1.
Knijff-Dutmer, E., Drossaers-Bakker, W., Verhoeven, A., Van der Sluijs Veer, G., Boers, M., Van der Linden, S., and Van de Laar, M., 2002. Rheumatoid Factor Measured by Fluoroimmunoassay: A Responsive Measure of Rheumatoid Arthritis Disease Activity that is Associated with Joint Damage, Annals of the Rheumatic Diseases, Vol. 61, No. 7, pp. 603-607.
Liao, J. H. and Lin, L. L., 2012, Investigation of Calculation methods for LS factors in USLE, Journal of Soil and Water Conservation, Vol. 44, No. 4, pp. 381-390.
Liaw, A. and Wiener, M., 2002. Classification and Regression by Random Forest, R news, Vol. 2, No.3, pp. 18-22.
Lin, C. Y., Lin, W. T., and Chou, W. C., 2002. Soil Erosion Prediction and Sediment Yield Estimation: the Taiwan Experience. Soil and Tillage Research, Vol. 68, No. 2, pp. 143-152.
Lin, W. T., Lin, C. Y., and Chou, W. C., 2006. Assessment of Vegetation Recovery and Soil Erosion at Landslides Caused by a Catastrophic Earthquake: A Case Study in Central Taiwan. Ecological Engineering, Vol. 28, No. 1, pp. 79-89.
Lin, W. Y. and Lin, L. L., 2008. Application and Discussion of Soil Erosion Prediction Model. Journal of Soil and Water Conservation, Vol. 40, Issue 3, pp. 357-368.
Lo, K. F., 1999, Revised Rainfall Erosion Index, Journal of Chinese Soil and Water Conservation, Vol. 30, No. 2, pp. 87-94.
Marceau, D. J., Howarth, P. J., Dubois, J. M. M., and Gratton, D. J., 1990. Evaluation of the Grey Level Co-occurrence Matrix Method, For Land-Cover Classification Using SPOT Imagery, IEEE Trans. on Geoscience and Remote Sensing, Vol. 28, No. 4, pp. 513-519.
Materka, A., and Strzelecki, M., 1998. Texture Analysis Methods–A Review, COST B11 report, Technical University of Lodz.
McCool, D. K., and George, G. O., 1983. A Second Generation Adaption of the Universal Soil Loss Equation for Pacific Northwest Drylands, American Society of Agriculture Engineers, pp. 83-2066.
McCool, D. K., Brown, L. C., Foster, G. R., Mulchler, C. K., and Meyer, L. D., 1987. Revised Slope Steepness Factor for the Universal Soil Loss Equation, American Society of Agriculture Engineers, Transaction, Vol. 30, No. 5, pp. 1387-1475.
Moore, I. D. and Wilson, J. P., 1992. Length-Slope Factors for the Revised Universal Soil Loss Equation: Simplified Method of Estimation, Journal of Soil and Water Conservation, Vol. 47, No. 5, pp. 423-428.
Özhan, S., Balcı, A. N., Özyuvaci, N., Hızal, A., Gökbulak, F., and Serengil, Y., 2005. Cover and Management Factors for the Universal Soil-Loss Equation for Forest Ecosystems in the Marmara Region, Turkey. Forest Ecology and Management, Vol. 214, No. 1, pp. 118-123.
Panagos, P., Karydas, C., Borrelli, P., Ballabio, C., and Meusburger, K., 2014. Advances in Soil Erosion Modelling through Remote Sensing Data Availability at European Scale. In Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), pp. 92290I-92290I.
Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., and Alewell, C., 2014. Soil Erodibility in Europe: A High-Resolution Dataset Based on LUCAS, Science of the Total Environment, No. 479, pp. 189-200.
Perrone, J. and Madramootoo, C. A., 1999. Sediment Yield Prediction Using AGNPS, Journal of Soil and Water Conservation, Vol. 54, No. 1, pp. 415-419.
Renard, K. G., Foster, G. R., Weesies, G. A., and Porter, J. P., 1991. RUSLE: Revised Universal Soil Loss Equation, Journal of Soil and Water Conservation, Vol. 46, No. 1, pp. 30-33.
Rokach, L. and Maimon, O., 2008. Data Mining with Decision Trees: Theory and Applications, World Scientific Pub Co Inc.
Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P., 2003. Random Forest: a Classification and Regression Tool for Compound Classification and QSAR Modeling. Journal of Chemical Information and Computer Sciences, Vol. 43, No. 6, pp. 1947-1958.
Symeonakis, E. and Drake, N., 2004. Monitoring Desertification and Land Degradation Over Sub-Saharan Africa. International Journal of Remote Sensing, Vol. 25, No. 3, pp. 573-592.
de Vente, J., Poesen, J., Govers, G., and Boix‐Fayos, C., 2009. The Implications of Data Selection for Regional Erosion and Sediment Yield Modelling, Earth Surface Processes and Landforms, Vol. 34, No. 15, pp. 1994-2007.
Van der Knijff, J., Jones, R. J. A., and Montanarella, L., 1999. Soil Erosion Risk Assessment in Italy, JRC, European Commission.
Weesies, G. A., McCool, D. K., and Yoder, D. C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Washington: US Department of Agriculture, Agricultural Research Service, Vol. 703.
Weszka, J. S., Dyer, C. R., and Rosenfeld, A., 1976. A Comparative Study of Texture Measures for Terrain Classification, IEEE Trans. Sys. Man Cyber, Vol. SMC-6, No. 4, pp. 269-285.
Wischmeier, W. H. and Smith, D. D., 1958. Rainfall Energy and Its Relationship to Soil Loss, Eos, Transactions American Geophysical Union, Vol. 39, No. 2, pp. 285-291.
Wischmeier, W. H. and Smith D. D., 1965. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains-Guide for Selection of Practices for Soil and Water Conservation, U.S. Department of Agriculture, Agriculture Handbook.
Wischmeier, W. H. and Smith, D. D., 1965. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains, Agricultural Handbook 282, Agricultural Research Service, United States Department of Agriculture.
Wischmeier, W. H. and Smith, D. D., 1978. Predicting Rainfall Erosion Losses-A Guide to Conservation Planning, U.S. Department of Agriculture, Agriculture Handbook.
Wischmeier, W. H., Johnson, C. B. and Cross, C. V., 1971, A Soil Erodibility Nomograph for Farmland And Construction Sites, J. Soil and Water Conserv., 26:189~193
Wischmeier, W. H., 1976. Use and Misuse of the Universal Soil Loss Equation, Journal of Soil and Water Conservation, Vol. 31, No. 1, pp. 5-9.
Yoder, D., and Lown, J., 1995. The Future of RUSLE: Inside the New Revised Universal Soil Loss Equation, Journal of Soil and Water Conservation, Vol. 50, No. 5, pp. 484-489.
陳良健、蔡富安、饒見有,2006。95年度以光學衛星影像輔助長期監測石門水庫集水區土地開發利用情形。期末報告,經濟部水利署北區水資源局。
蔡富安、饒見有,2008,96-98年光學衛星影像長期輔助監測石門水庫集水區土地開發利用情形。期末報告,經濟部水利署北區水資源局。
吳久雄、林俐玲、盧光輝,1990,山坡地土壤流失量之推估,林業特刊,第26期,第31-48頁。
周天穎,葉美伶,1999,空間資訊及土壤冲蝕模式之整合應用,水土保持學報,第31卷,第1期,第19-28頁。
周明中,2005,紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究,碩士論文,國立中央大學土木工程研究所。
林文賜,2002,集水區空間資訊萃取及坡面泥砂產量推估之研究,博士論文,國立中興大學水土保持學系。
林俐玲,林可薇,陳品岡,沈哲緯,2011,斜坡單元進行山坡地土壤流失量之推估,水土保持學報,第43卷,第4期,第395-410頁。
林俐玲,張舒婷,2008,土壤沖蝕性指數估算公式之研究,中華水土保持學報,第39卷,第4期,第355-366頁。
張鈞凱,2007,高光譜影像立方體紋理特徵之三維計算,碩士論文,國立中央大學土木工程研究所。
梁惠儀、許振崑、林伯勳、鄭錦桐,2010,極端暴雨事件於石門水庫集水區隻土壤沖蝕量估算及探討,中興工程季刊,第106期,第5-15頁。
陳浴秉,2005,空間域與頻率域影像紋理分析之研究,碩士論文,國立中興大學土木工程研究所。
黃俊德,1979,臺灣降雨沖蝕指數之研究,中華水土保持學報,第10卷,第1期,第127-144頁。
詹原魁,2014,石門水庫集水區土壤沖蝕量之分析,碩士論文,臺北科技大學土木與防災研究所。
廖秀華,1990,應用地理資訊系統推估土壤沖蝕潛能,碩士論文,國立中興大學水土保持學系。
劉治中,蕭國鑫,1999,植生指數在集水區內的地文分佈研究,航測及遙測學刊,第4卷,第4期,第39-53頁。
盧昭堯, 蘇志強, 吳藝昀,2005,台灣地區年等降雨沖蝕指數圖之修訂,水土保持學報,第36卷,第2期,第159-172頁。
盧昭堯、蘇志強、吳異昀,2005,臺灣地區年等降雨沖蝕指數之修訂,中華水土保持學報,第36卷,第2期,第159-172頁。
賴哲儇,2009,高光譜影像立方體於特徵空間之三維紋理計算,碩士論文,國立中央大學土木工程研究所。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔