(3.236.228.250) 您好!臺灣時間:2021/04/19 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施閏澶
研究生(外文):Jun-Chan Shih
論文名稱:高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
論文名稱(外文):non
指導教授:洪崇展李顯智李顯智引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:100
中文關鍵詞:乾縮自體收縮
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高韌性纖維混凝土(Engineered Cementitious Composites,簡稱ECC)是經由微觀力學設計的水泥基工程複合材料,是在基體中添加聚乙烯醇纖維(polyvinyl alcohol,簡稱PVA),在拉力和撓曲作用下呈現高延展性,具有應變硬化和多重開裂的特性。
本研究透過比較飛灰含量、纖維含量、膨脹劑含量來探討ECC材料之收縮性質與力學性質之影響,包括乾燥收縮試驗、自體收縮試驗、圓柱壓力試驗、直接拉力試驗和四點彎矩試驗。結果顯示,飛灰含量越多之ECC材料會使乾縮增加而自收縮漸少。而纖維含量越多之ECC材料會使乾縮和自收縮同時增加。在所有添加膨脹劑之配比中,膨脹劑含量0.5%擁有最低之乾縮與自收縮。

Engineered Cementitious Composites (ECC) is a material using polyvinyl alcohol (PVA) fibers in the matrix. The most important performance characteristic of ECC is that it can exhibit multiple cracks and strain-hardening under tensile and flexural behavior.
In this study, the content of fly ash, PVA fiber and expansive agent are used to investigate ECC’s characteristics. Including drying shrinkage test, autogenous shrinkage test, uniaxial Compressive test, uniaxial tensile test and four points flexural test. The result shows that drying shrinkage increase and autogenous shrinkage decrease while the more content of fly ash in ECC. The more fiber content in ECC cause drying shrinkage and autogenous shrinkage increase. Among all proportions with expansive agent. The specimen adding 0.5% of expansive agent has the lowest drying shrinkage and autogenous shrinkage.

摘要 i
誌謝 iv
Abstract iii
目錄 iv
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
第二章 文獻回顧 3
2.1高韌性纖維混凝土(Engineered Cementitious Composites, ECC) 3
2.2 水泥的收縮變形機制 4
2.2.1塑性收縮(Plastic shrinkage) 5
2.2.2自體收縮(Autogenous shrinkage) 5
2.2.3乾燥收縮(Drying shrinkage) 6
2.3 防範水泥基材料發生裂縫之對策 6
2.3.1使用飛灰當作摻料 7
2.3.2使用纖維當作摻料 11
2.3.3使用膨脹劑當作摻料 14
2.3.4使用爐石粉當作摻料 17
2.3.5其他對收縮性質影響參數 19
第三章 實驗規劃及設置 22
3.1 實驗規劃 22
3.2 實驗材料 22
3.3 試體參數及編號 26
3.4 試體製作與養護流程 30
3.4.1 實驗設計流程 30
3.5 試驗內容與方法 35
3.5.1 乾縮試驗與自體收縮試驗 35
3.5.2 圓柱壓力試驗 36
3.5.3 單軸拉力試驗 37
3.5.4 四點彎矩試驗 38
第四章 試驗結果與討論 40
4.1飛灰對收縮及力學性質影響 40
4.1.1乾燥收縮試驗 40
4.1.2 自體收縮試驗 41
4.1.3 圓柱壓力試驗 43
4.1.4 直接拉力試驗 46
4.1.5 四點彎矩試驗 50
4.2 纖維對收縮及力學性質影響 52
4.2.1 乾燥收縮試驗 52
4.2.2 自體收縮試驗 54
4.2.3 圓柱壓力試驗 55
4.2.4 直接拉力試驗 58
4.2.5 四點彎矩試驗 62
4.3 膨脹劑對收縮及力學性質影響 64
4.3.1 乾燥收縮試驗 64
4.3.2 自體收縮試驗 66
4.3.3 圓柱壓力試驗 67
4.3.4 直接拉力試驗 70
4.3.5 四點彎矩試驗 74
4.4 不同混凝土對收縮影響 76
4.4.1 不同配比差異之乾縮 76
4.4.2 試體大小差異之乾縮 78
第五章 結論與建議 81
參考文獻 85


[1] Sahmaran, M., Lachemi, M., Hossain, K.M.A. and Li, V.C., Internal curing of engineered cementitious composites for prevention of early age autogenous shrinkage cracking. Cement and Concrete Research, 2009. 39(10): p. 893-901.
[2] Rokugo, K., Kanda, T. and Yokota, H., Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks(HPFRCC). Materiasl and Structures, 2008. 82(9): p. 1197-1208.
[3] Mindess, S. and Young, J.F., Concrete. Prentics-Hall, Inc., Englewood Cliffs, New Jersey, 2002.
[4] Bentz DP, Jensen OM. Mitigation strategies for autogenous shrinkage cracking. Cement Concrete Composite 2004. 26(6): p.667-685.
[5] Jensen OM, Hansen PF. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement Concrete Research 1999. 29(4): p.567-575.
[6] Jensen OM, Hansen PF. Autogenous deformation and RH-change inperspective. Cement Concrete Research 2001. 31(12): p1859-1865.
[7] Jiang Z, Sun Z, Wang P. Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes. Cement Concrete Research 2005. 35(8): p.1539-1545.
[8] Neville, A.M., Properties of Concrete. 3rd Edition,Pitman Publishing Limited,1981 .
[9] Li, M., and Li, V.C., Behavior of ECC/Concrete layer repair system under drying shrinkage conditions. Proceedings of ConMat 5, 2006. : p.22-24.
[10] 石正義、林文祺,建築物龜裂防範與對策. 詹氏書局,台北,1993。
[11] 廖肇昌、黃兆龍,混凝土問題原因及診治. 民全書局有限公司,台北,1987。
[12] Özbay, E., Karahan, O., Lachemi, M., Hossain, K. M. A., and Atis, C. Duran, Investigation of Properties of Engineered Cementitious Composites Incorporating High Volumes of Fly Ash and Metakaolin. ACI Materials Journal, 2012. 109(5).
[13] Nath, P. and Sarker, P.K., Effect of mixture proportions on the drying shrinkage and permeation properties of high strength concrete containing class F fly ash. KSCE Journal of Civil Engineering, 2013. 17(6): p. 1437-1445.
[14] Jiang, L.H. and Malhotra, V.M., Reduction of water demand of non-air-entrained concrete incorporating large volumes of fly ash. Cement and Concrete Research, 2000. 30(11): p. 1785-1789.
[15] Naaman, A.E. and Reinhardt, H.W., Characterization of high performance fiber reinforced cement composites-HPFRCC, high performance fiber reinforced cement composites 2. In Proceedings of the 2nd International Workshop. Ann Arbor, Mich, USA. 1995.
[16] Fischer, G and Li, V. C. Effect of matrix ductility on deformation behavior of steel reinforced ECC flexural members under reversed cyclic loading conditions. ACI Structural Journal, 2002. 99(6): p. 781-790.
[17] Canbolat, B.A., Parra-Montesinos, G.J. and Wight, J.K. Experimental study on seismic behavior of high-performance fiber-reinforced cement composite coupling beams. ACI Structural Journal, 2005. 102(1): p. 159-166.
[18] Kobayashi, K and Rokugo, K. Mechanical performance of corroded RC member repaired by HPFRCC patching. Constructionand Building Materials, 2013. 39: p. 139-147.
[19] Zhang, Y.X., Ueda,N., Umeda, Y., Nakamura, H. and Kunieda, M. Evaluation of shear failure of strain hardening cementitious composite beams. The Proceedings of the 12th East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-12’11), 2011. 14: p. 2048-2057.
[20] Hung, C.C., Tseng, B.T., You, W.G., and Huang, J.L. Effectiveness of using high performance fiber reinforced concrete in coupled structural walls for improving seismic performance. Structural Engineering, Chinese Society of Structural Engineering, 2011. 26(4): p. 3-16.
[21] Kim, S.W. and Yun, H.D. Crack-damage mitigation and flexural behavior of flexure-dominant reinforced concrete beams repaired with strain-hardening cement-based composite. Composites Part B, 2011. 42(4): p. 645-656.
[22] Hung, C.C. and Chueh, C.Y. Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 2016. 122: p. 108-120.
[23] Zhang, J., Gong, C., Guo, Z. and Zhang, M. Engineered cementitious composite with characteristic of low drying shrinkage. Cement and Concrete Research, 2009. 39(4): p. 303-312.
[24] Wang, J.Y., Banthia, N. and Zhang, M.H. Effect of shrinkage reducing admixture on flexural behaviors of fiber reinforced cementitious composites. Cement and Concrete Composites, 2012. 34(4): p. 443-450.
[25] Cheung, A.K.F. and Leung, C.K.Y. Shrinkage reduction of high strength fiber reinforced cementitious composites (HSFRCC) with various water-to-binder ratios. Cement and Concrete Composites, 2011. 33(6): p. 661-667.
[26] Lepech, M. and Li, V. C. Durability and long term performance of engineered cementitious composites. In Proceedings of the International Workshop on HPFRCC in Structural Applications, 2006. p. 23-26.
[27] Lee, Y.H. and Yun, H.D. Effects of expansive admixture on the mechanical properties of strain-hardening cement composite (SHCC). Journal of the Korea Concrete Institute, 2010. 22(5): p. 617-624.
[28] Mao, X., Zhao, T.J. and Zhang P., Optimization of shrinkage and crack resistance performance of Engineered Cementitious Composites (ECC). Electric Technology and Civil Engineering (ICETCE), 2011 International Conference on. p. 534-538.
[29] 陳建奎,混凝土外加劑的原理與應用. 中國計劃出版社,北京,1997。
[30] Nagataki, S. and Gomi, H., Expansive admixtures (mainly ettringite). Cement and Concrete Composites, 1998. 20(3): p.163-170.
[31] 馮浩、朱清江,混凝土外加劑工程應用手冊. 中國建築工藝出版社,北京,1999。
[32] Choi, W.C. and Yun, H.D., Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites. The Scientific World Journal, 2013. Article ID 418734.
[33] Zhu, Y., Yang, Y., and Yao, Y., Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash. Construction and building materials, 2012. 36: p.1076-1081.
[34] Jiang, L. H. and Malhotra, V. M., Reduction of water demand of non-air-entrained concrete incorporating large volumes of fly ash. Cement and Concrete Research, 2000. 30(11):p. 1785-1789.
[35] 黄士元,近代混凝土技術.,陝西學技術出版社,1998。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔