(34.204.201.220) 您好!臺灣時間:2021/04/20 12:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳依涵
研究生(外文):I-Han Chen
論文名稱:發展地面資料同化方法以改善都卜勒雷達變分分析系統之分析及預報能力
論文名稱(外文):Development of a surface assimilation scheme in a Variational Doppler Radar Analysis System for improving the model analysis and forecast skill
指導教授:廖宇慶
指導教授(外文):Yu-Chieng Liou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣科學學系
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:110
中文關鍵詞:都卜勒雷達變分分析系統四維變分資料同化
外文關鍵詞:VDRAS4DVAR
相關次數:
  • 被引用被引用:2
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
雷達觀測資料具有高時空解析度的特性,對於中小尺度的天氣系統可以有較佳的描述。但由於台灣複雜地形及雷達 PPI 掃描策略影響,雷達觀測範圍受到諸多限制,其中觀測波束受到地形阻擋,且電磁波觀測高度隨離雷達距離增加而上升,使得低層觀測資料不足。前人研究指出,此資料缺乏的區域大多位於邊界層內,但邊界層內有許多物理機制牽動對流結構及發展,底層觀測資料不足亦會降低雷達資料同化的準確度,例如造成近地表冷池反演結果不佳。
本研究使用工具為美國國家大氣研究中心(NCAR)發展的都卜勒雷達變分分析系統(VDRAS)。相較先前版本僅能同化雷達資料,本研究結合VDRAS與地面資料同化方法,探討使用四維變分方法同化地面觀測資料,是否可以改善雷達底層觀測資料不足的問題,並進一步提升模式分析及預報的能力。
為驗證方法及模式修改的正確性,首先進行觀測系統模擬實驗(OSSE)。結果顯示,同化底層觀測資料可以有效降低分析場中底層風場及雨水混合比誤差,並藉由價值函數中平滑項及模式動力結構的作用,將底層資訊影響至低、中層。但若只同化底層雨水混合比觀測,對於分析場及預報結果皆有不利的影響。檢視一至三小時定量降水預報校驗結果,顯示同化底層觀測可以提升模式預報能力。
吾人接續應用此方法分析2014年8月7日台灣南部強降水個案,受到西南氣流帶來水氣量影響及陸風局部輻合作用,當日在台南、高雄、屏東地區產生持續性對流系統消長,最高累積降雨達到130毫米。由中央氣象局地面自動測站觀測顯示,此系統發展過程中西南部沿海有風場輻合現象。研究結果指出,尚未進行地面風場同化的分析場中,底層風場為均勻的西南風及南風,無法反演出風場輻合結構。經由同化地面風場資料,可以有效提升模式解析地面資訊的能力。此外,同化地面溫度亦可得到與地面觀測較相近的溫度結構,而同化地面雨量觀測,直接提升底層回波場的強度。由於本研究使用的模式無地形解析能力,為此地面資料同化方法應用上的限制。

The purpose of this study is to implement a surface assimilation scheme to the Variational Doppler Radar Analysis System (VDRAS) for further improving the model analysis and forecast skill. Due to the lack of low-elevation radar observations caused by standard Plan Position Indicator (PPI) scans and/or beam-blockage, the accuracy of low level analysis after data assimilation process could be significantly reduced.
An observation system simulation experiments (OSSE) and a real case study are conducted to investigate the feasibility of the new surface data assimilation scheme and how it impacts the convective system. Surface observations including rainwater mixing ratio, liquid water potential temperature and horizontal wind components are selected to be assimilated into VDRAS.
The results show that assimilation of low level wind information significantly improves the analysis and forecast. Assimilation of only rain water mixing ratio has negative impact on the accuracy of the analysis fields. However, errors can be corrected by assimilating low level wind field. The vertical structure of the analysis field demonstrates that the modification of surface observation can be spread to higher levels through model dynamics and smoothness terms embedded in the cost function.
Application in a real case indicates that this data assimilation scheme successfully retrieves the low level convergence line with reduction of the wind speed inland, and helps to recover the low level temperature structure.



摘要 i
Abstract iii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 vii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究目的 3
1-4 論文架構 4
第二章 研究方法 5
2-1 都卜勒雷達變分分析系統 5
2-1-1 中尺度背景場 5
2-1-2 雲解析模式 6
2-1-3 價值函數 9
2-1-4 伴隨模式 10
2-2 驗證參數 12
第三章 地面資料同化方法 14
3-1 地面觀測項 14
3-2 觀測算符 14
3-2-1 地面水平風場 15
3-2-2 地面降雨量 16
3-2-3 地面溫度 17
第四章 觀測系統模擬實驗 19
4-1 真實場 19
4-2 模式設定與觀測資料 20
4-3 單點測試實驗 20
4-4 地面資料同化實驗 21
4-4-1 分析場 22
4-4-2 定量降水預報 24
第五章 真實個案研究 26
5-1 個案介紹 26
5-2 資料來源與處理 27
5-2-1 雷達觀測資料與品質控管 27
5-2-2 地面觀測資料與品質控管 28
5-3 模式設定與實驗設計 29
5-4 分析場 30
5-4-1 R實驗組 30
5-4-2 W實驗組 32
第六章 結論與未來展望 34
6-1 總結 34
6-2 未來展望 35
參考文獻 37
附表 40
附圖 42

楊靜伃,2012:使用四維變分都卜勒雷達變分分析系統(VDRAS)與WRF改善短期定量降水預報。國立中央大學大氣物理所碩士論文,1–83。
Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time series observations. NOAA Tech. Memo. Erl Nssl-62, 60pp.
Chang, S.-F., J. Sun, Y.-C. Liou, S.-L. Tai, and C.-Y. Yang, 2014: The influence of erroneous background, beam-blocking and microphysical nonlinearity on the application of a four-dimensional variational Doppler radar data assimilation system for quantitative precipitation forecasts. Meteor. Appl., 21, 444–458.
Chang, S.-F., Y.-C. Liou, J. Sun, and S.-L. Tai, 2016: The implementation of the ice phase microphysical process into a four-dimensional Variational Doppler Radar Analysis System(VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. Journal of the Atmospheric Sciences.
Chen, X. C., K. Zhao, J. Z. Sun, B. W. Zhou, and W. C. Lee, 2016: Assimilating surface observations in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Adv. Atmos. Sci., doi: 10.1007/s00376-016-5290-0., in press.
Crook, N. A., and J. Sun, 2002: Assimilating radar, surface and profiler data for the Sydney 2000 forecast demonstration project. J. Atmos. Oceanic Technol., 19, 888–898.
Crook, N. A., and J. Sun, 2004 Analysis and Forecasting of the Low-Level Wind during the Sydney 2000 Forecast Demonstration Project. Weather and Forecasting 19:1, 151-167.

Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587–606.
Hsu, S. A., E. A. Meindl, and D. B. Gilhousen, 1994: Determining the Power-Law Wind-Profile Exponent under Near-Neutral Stability Conditions at Sea. Journal of Applied Meteorology, 33, 757-765.
Kawabata J., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Wakazuki, 2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensiojnal variational data assimilation system, J. Meteor. Soc. Japan, 85, 255-276.
Klemp, Joseph B., Robert B. Wilhelmson, 1978: The Simulation of Three-Dimensional Convective Storm Dynamics. J. Atmos. Sci., 35, 1070–1096.
Lin, Y., P. Ray, and K. Johnson, 1993: Initialization of a modeled convective storm using Doppler radar derived fields. Mon. Wea. Rev., 121, 2757–2775.
Peterson, E. W., and J. P. Hennessey, 2010: On the Use of Power Laws 557 for Estimates of Wind Power Potential. J.appl.meteor, 17, 390-394.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observation using a cloud model and its adjoint. Part I:Model development and simulated data experiments. J. Atmos. Sci., 54,1642–1661.
Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos.Sci., 55, 835–852.
Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations, Mon. Wea. Rev.,136, 2364–2388.
Sun, J., and H. Wang, 2013: Radar data assimilation with WRF 4D-Var: Part II. Comparison with 3D-Var for a squall line over the U.S. Great Plains. Mon. Wea. Rev., 141, 2245–2264.
Tai, S.L., Y.C.Liou., J. Sun., S.F. Chang., and M.C.Kuo,2011: Precipitation Forecasting Using Doppler Radar Data, a Cloud Model with Adjoint,and the Weather Research and Forecasting Model :Real Case Studies during SoWMEX in Taiwan. Wea. Forecasting, 26, 975–992.
Warner, T. T., E. E. Brandes, C. K. Mueller, J. Sun, and D. N. Yates, 2000: Prediction of a flash flood in complex terrain. Part I: A comparison of Rainfall estimates from radar, and very short range rainfall simulations from a dynamic model and an automated algorithmic system. J. Appl. Meteor., 39,815–825.
Weisman, M. L. and J.B. Klemp, 1982: The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy. Mon.Wea. Rev., 110, 504-520.
Weisman, and R. Rotunno, 2004: “Theory for Strong Long-Lived Squall Lines”Revisited. J. Atmos. Sci., 61, 361-382.
Xiao, Q., Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker, 2005:Assimilation of Doppler radar observations with a regional 3DVAR System:Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl.Meteor., 44, 768–788.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔