(3.227.208.0) 您好!臺灣時間:2021/04/21 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳灝
研究生(外文):Hao Chen
論文名稱:同步輻射X光量測錫膜應力對錫晶鬚生長動力學之影響
論文名稱(外文):Synchrotron Radiation X-Ray Measurement of Residual Stress in Sn Films and the Effect on Kinetic Analysis of Sn Whisker Growth
指導教授:吳子嘉
學位類別:博士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:87
中文關鍵詞:錫晶鬚微結構殘留應力同步輻射X光
外文關鍵詞:Sn whiskerMicrostructureResidual stressSynchrotron radiation X-ray
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
自發性錫晶鬚之生成是危害電子元件可靠度的主因之一,電子構裝產業中常以錫銅兩種材料為主體,然而在室溫下,當錫與銅接觸時即反應生成介金屬化合物,並對錫膜內部產生一壓應力,此應力便是造成自發錫晶鬚生長之主要驅動力。近年來伴隨著電子元件趨向微型化,且高可靠度之電子元件亦被廣泛應用,無鉛銲錫引發之錫晶鬚危害也日趨嚴重,因此瞭解錫晶鬚生長機制便是一重要課題。但由於錫晶鬚生長的難以預測性,加劇了研究之困難,為了能更深入研究錫晶鬚之生長機制,本實驗利用微影技術方式於錫薄膜表面製造規則陣列圖形,創造出規則的人工弱點,並藉由此法控制錫晶鬚生長位置。
本實驗亦改變錫膜之微結構,欲探究錫膜微結構對於錫晶鬚生長之關係,藉由定量分析量測不同微結構之錫膜中錫晶鬚的生長模式。本研究觀察到錫晶鬚直徑與錫晶粒之相依性,驗證錫晶鬚之直徑將被錫膜晶粒所控制,研究結果直接證實錫膜的平均晶粒及厚度皆可對錫晶鬚之生長行為造成影響,其中錫膜厚度影響錫晶鬚之生長更勝於錫膜平均晶粒之影響。錫晶鬚自發性之生成包含了應力的產生與釋放,此次研究進一步利用同步輻射光源量測錫膜之殘留應力,觀測微結構對於殘留應力釋放之影響,並且連結錫晶鬚之孕核期與薄膜之殘留應力。本研究利用熱力學之理論方式,探討錫晶鬚生長行為與各式微結構錫膜之關係式。
由本論文之結果可知,增加錫膜厚度以及晶粒大小皆可降低錫晶鬚之生成,並延緩錫晶鬚之生長速率,工業界可藉由此方式,降低因錫晶鬚造成短路之可能性,如此便可提升元件之可靠度。同時可利用本論文所提出之數學模型,簡單預測錫晶鬚在不同錫膜微結構下之關係,調整最符合業界經濟效益之元件鍍膜設計,提供業界於設計元件及提升可靠度之一參考。

Spontaneous Sn whisker growth is one of the most serious reliability problems for electronic devices. Sn and Cu are commonly used in electronic packaging, and they easily form intermetallic compounds (Cu6Sn5) at room temperature, inducing compressive stress, which is the main force that drives the spontaneous growth of Sn whiskers from Sn films. The electronic product tends to be smaller and thinner than the preceding design, and the demands for high reliability devices are increasing. The risk of Sn whiskers increases with each new design iteration. Manufacturers must understand the growth mechanisms of Sn whiskers to minimize the problems, but the unpredictability of Sn whisker growth caused difficulties for research. To effectively discuss the growth mechanisms of Sn whiskers, a lithography process was used to control the positions of Sn whiskers by creating arrays of weak spots on Sn film surfaces.
This study discusses how Sn film microstructures affect the kinetics of spontaneous Sn whisker growth and qualitatively analyzes Sn whiskers with various microstructures. The result indicates a strong correlation between the whisker diameter and grain size of the films. The whisker diameters were confined depended on the sizes of the Sn grains. The results directly evidenced that both the thickness and grain size of Sn films can influence the growth of Sn whiskers. Additionally, thickness has a greater effect on whisker growth than grain size does. Since Sn whisker growth is a spontaneous phenomenon that combines continuous processes of stress generation and relaxation, biaxial stress in the films was measured using synchrotron radiation X-ray. The stress evolution during annealing was correlated with the growth kinetics. An incubation period was observed, during which the compressive stress in the films built up and the whiskers nucleated. From the thermodynamic relationship between the growth kinetics of the Sn whiskers and the microstructures of the films, an equation was formulated to predict the growth of the Sn whiskers from various microstructures of the films.
According to the results, increasing the thickness and grain size of Sn films would inhibit the growth rates of whiskers and suppress the formation of whiskers. Through this method, the electronic packaging industry can enhance device reliability.

Contents
摘要 I
Abstract II
Acknowledgement IV
Contents V
List of Figures VII
List of Tables IX
1. Introduction 1
1.1 Reliability problems and challenging tasks in Sn whisker 1
1.2 Factors that affect Sn whisker growth 3
1.2.1 Stress effect 3
1.2.2 Oxidation effects and surface coating 5
1.2.3 Microstructural effects 7
1.2.4 Environmental conditions 9
1.2.5 Orientation effects 11
1.3 Mitigation of spontaneous Sn whisker growth 14
1.3.1 Postbake treatment 14
1.3.2 Diffusion barrier 16
1.3.3 Thickness effects 18
1.3.4 Composition effect 20
1.3.5 Surface oxide treatment 22
2. Motivation 24
3. Experimental 26
3.1 Sample fabrication 26
3.2 Measurement of lengths of Sn whiskers through a trigonometric method 28
3.3 Stress measurement by the sin2Ψ method 29
4. Results and Discussion 31
4.1 Control the microstructure of Sn film and position of Sn whisker 31
4.1.1 Sample preparation and analysis 31
4.1.2 Controlling the positions of Sn whiskers 33
4.2 Qualitative analysis of Sn whisker with various microstructures of Sn films 34
4.2.1 Effect of thickness of Sn films on Sn whisker formation 34
4.2.2 Effect of Sn grain size on Sn whisker formation 38
4.2.3 Synchrotron radiation X-ray measurement the residual stress 45
4.3 Modeling for Sn whisker growth 50
4.3.1 Two dimensional model of Sn whisker growth along in-plane direction 50
4.3.2 Two dimensional model of Sn whisker growth along out-of-plane direction 53
4.3.3 Formula of Sn whisker growth 57
5. Conclusions 62
6. References 63

[1] B. D. Dunn, “Whisker formation on Electronic Materials”, Circuit World, 2, 32 (1976)
[2] J. A. Brusse, G. J. Ewell, and J. P. Siplon, “Tin whiskers: attributes and mitigation”, Capacitor and Resistor Technology Symposium, 67 (2002)
[3] E. George, and M. Pecht, “Tin whisker analysis of an automotive engine control unit”, Microelectronics Reliability, 54, 214 (2014)
[4] B. Sood, M. Osterman, and M. Pecht, “Tin whisker analysis of Toyota’s electronic throttle controls”, Circuit World, 37, 4 (2011
[5] K. N. Tu, “Interdiffusion and reaction in bimetallic Cu-Sn thin films”, Acta Metallurgica, 21, 347 (1973)
[6] K. N. Tu, “Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin film reactions”, Physical Review B, 49, 2030 (1994)
[7] K. N. Tu and K. Zeng, “Tin–lead (SnPb) solder reaction in flip chip technology”, Materials Science and Engineering: R: Reports, 34, 1 (2001)
[8] S. M. Arnold, “Repressing the growth of tin whisker”, Plating, 53, 96 (1966)
[9] W. J. Boettinger, C. E. Johnson, L. A. Bendersky, K. -W. Moon, M. E. Williams and G. R. Stafford, “Whisker and hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits”, Acta Materialia, 53, 5033 (2005)
[10] N. Jadhav, J. Wasserman, F. Pei, and E. Chason, “Stress relaxation in Sn-based films: effects of Pb alloying, grain size, and microstructure” Journal of Electronic Materials, 41, 588 (2011)
[11] K. Suganuma, “Lead-free soldering in electronic: science, technology, and environmental impact”, New York: Marcell Dekker (2004)
[12] J. C. B. Lee, “The Sn whisker growth evolution of IC packaging on the PC board assembly”, 2007 Electronic Components and Technology Conference, 1964 (2007)
[13] K. N. Tu, C. Chen, A. T. Wu, “Stress analysis of spontaneous Sn whisker growth”, Journal of Materials Science: Materials in Electronics, 18, 269 (2007)
[14] R. M. Fisher, L. S. Darken, K. G. Carrol, “Accelerated growth of tin whiskers”, Acta Metallurgica, 2, 368 (1954)
[15] K. W. Moon, S. K. Kim, M. E. Williams, W. J. Boettinger, and G. R. Stafford, “Effect of current density and electrolyte concentration on hillock growth from pure bright Sn electrodeposits”, Journal of Applied Electrochemistry, 40, 1671 (2010)
[16] H. Chen, H. Y. Lee, C. S. Ku, and Albert T. Wu, “Evolution of residual stress and qualitative analysis of Sn whisker with various microstructures”, Journal of Materials Science, 51, 3600 (2016)
[17] H. P. Howard, J. Cheng, P. T. Vianco, and J. C. M. Li, “Interface flow mechanism for tin whisker growth”, Acta Meterialia, 59, 1957 (2011)
[18] J. Cheng, S. Chen, P. T. Vianco, and J. C. M. Li, “Quantitative analysis for hillocks growth from electroplated Sn film”, Journal of Applied Physics, 107, 074902 (2010)
[19] J. Cheng, F. Yang, P. T. Vianco, B. Zhang, and J. C. M. Li, “Optimum thickness of Sn film for whisker growth”, Journal of Electronic Materials, 40, 2069 (2011)
[20] J. Cheng, P. T. Vianco, B. Zhang, and J. C. M. Li, “Nucleation and growth of tin whiskers”, Applied Physics Letters, 98, 241910 (2011)
[21] J. L. Jo, S. Nagao, T. Sugahara, M. Tsujimoto, K. Suganuma, “Thermal stress driven Sn whisker growth in air and in vacuum”, Journal of Materials Science: Materials in Electronics, 24, 2897 (2013)
[22] Y. Wang, J. E. Blendell, and C. A. Handwerker, “Evolution of tin whiskers and subsiding grains in thermal cycling”, Journal of Materials Science, 49, 1099 (2013)
[23] T. Terasaki, T. Iwasaki, Y. Okura, T. Suzuki, T. Kato, M. Nakamura, and T. Hashimoto, “Evaluation of tin-whisker growth during thermal-cycling testing using stress- and mass-diffusion analysis”, Electronic Components and Technology Conference, 277 (2009)
[24] F. Pei, A. F. Bower, and E. Chason, “Quantifying the rates of Sn whisker growth and plastic strain relaxation using thermally-induced stress”, Journal of Electronic Materials, 45, 21 (2016)
[25] F. Pei, C. L. Briant, H. Kesari, A. F. Bower, and E. Chason, “Kinetics of Sn whisker nucleation using thermally induced stress”, Scripta Materialia, 93, 16 (2014)
[26] K. Suganuma, A. Baated, K. S. Kim, K. Hamasaki, N. Nemoto, T. Nakagawa, and T. Yamada, “Sn whisker growth during thermal cycling”, Acta Materialia, 59, 7255 (2011)
[27] F. Pei, and E. Chason, “In situ measurement of stress and whisker/hillock density during thermal cycling of Sn layers”, Journal of Electronic Materials, 43, 80 (2014)
[28] M. Dittes, P. Oberndorff, P. Crema, and V. Schroeder, “Tin whisker formation in thermal cycling conditions”, Electronics Packaging Technology Conference, 5th, 183 (2003)
[29] K. N. Tu, and J. C. M. Li, “Spontaneous whisker growth on lead-free solder finishes”, Materials Science and Engineering A, 409, 131 (2005)
[30] A. He, D. G. Ivey, “Microstructural study of Sn films electrodeposited on Cu substrates: Sn whiskers and Cu6Sn5 precipitates”, 50, 2944 (2015)
[31] K. S. Kim, C. H. Yu, S. W. Han, K. C. Yang, and J. H. Kim, “Investigation of relation between intermetallic and tin whisker growths under ambient condition”, Microelectronics Reliability, 48, 111 (2008)
[32] G. T. Galyon, and L. Palmer, “An integrated theory of whisker formation: the physical metallurgy of whisker formation and the role of internal stresses”, IEEE Transactions on Electronics Packaging Manufacturing, 28, 17 (2005)
[33] B. Z. Lee, and D. N. Lee, “Spontaneous growth mechanism of tin whiskers”, Acta Materialia, 46, 3701 (1998)
[34] G. T. T. Sheng, C. F. Hu, W. J. Choi, K. N. Tu, Y. Y. Bong, and L. Nguyen, “Tin whiskers studied by focused ion beam imaging and transmission electron microscopy”, Journal of Applied Physics, 92, 64 (2002)
[35] M. Sobiech, U. Welzel, E. J. Mittemeijer, W. Hugel, and A. Seekamp, “Driving force for Sn whisker growth in the system Cu-Sn”, Applied Physics Letters, 93, 011906 (2008)
[36] P. Oberndorff, M. Dittes, P. Crema, P. Su, and E. Yu, “Humidity effects on Sn whisker formation”, IEEE Transactions on Electronics Packaging Manufacturing, 29, 239 (2006)
[37] J. W. Osenbach, J. M. DeLucca, B. D. Potteiger, A. Amin, R. L. Shook, and F. A. Baiocchi, “ Sn corrosion and its influence on whisker growth”, IEEE Transactions on Electronics Packaging Manufacturing, 30, 23 (2007)
[38] K. N. Tu, “Cu/Sn interfacial reactions: thin-film case versus bulk case”, Materials Chemistry and Physics, 46, 217 (1996)
[39] C. H. Su, H. Chen, H. Y. Lee, and A. T. Wu, “Controlled positions and kinetic analysis of spontaneous tin whisker growth”, Applied Physics Letters, 99, 131906 (2011)
[40] C. H. Su, H. Chen, H. Y. Lee, C. Y. Liu, C. S. Ku, and A. T. Wu, “Kinetic analysis of spontaneous whisker growth on pre-treated surfaces with weak oxide”, Journal of Electronic Materials, 43, 3290 (2014)
[41] M. A. Ashworth, G. D. Wilcox, R. L. Higginson, R. J. Heath, C. Liu, and R. J. Mortimer, “The effect of electroplating parameters and substrate material on tin whisker formation”, Microelectronics Reliability, 55, 180 (2015)
[42] L. Sauter, A. Seekamp, Y. Shibata, Y. Kanameda, and H. Yamashita, “Whisker mitigation measures for Sn-plated Cu for different stress tests”, Microelectronics Reliability, 50, 1631 (2010)
[43] C. F. Yu, C. M. Chan, and K. C. Hsieh, “The effect of tin grain structure on whisker growth”, Microelectronics Reliability, 50, 1146 (2010)
[44] E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A. Bower, “Growth of whiskers from Sn surfaces: driving forces and growth mechanisms”, Progress in Surface Science, 88, 103 (2013)
[45] K. Tsuji, “Study on the mechanism of Sn whisker growth Part I relation between whisker growth and the structure of deposits”, Journal of Surface Finishing Society of Japan, 56, 451 (2006)
[46] T. Shibutani, “Effect of grain size on pressure-induced tin whisker formation”, IEEE Transactions on Electronic Packaging Manufacturing, 33, 177 (2010)
[47] C. F. Li, Z. Q. Liu, and J. K. Shang, “The effects of temperature and humidity on the growth of tin whisker and hillock from Sn5Nd alloy”, Journal of Alloys and Compounds, 550, 231 (2013)
[48] I. Sakamoto, “Whisker test methods of JEITA whisker growth mechanism for test methods”, IEEE Transactions on Electronics Packaging Manufacturing, 28, 10 (2005)
[49] J. W. Osenbach, “Tin whisker test development temperature and humidity effects part II: acceleration model development”, IEEE Transactions on Electronics Packaging Manufacturing, 33, 16 (2010)
[50] H. L. Reynolds, and J. W. Osenbach, “Tin whisker test development temperature and humidity effects part I: experimental design, observations, and data collection”, IEEE Transactions on Electronics Packaging Manufacturing, 33, 1 (2010)
[51] E. R. Crandall, G. T. Flowers, P. Lall, and M. J. Bozack, “Whisker growth under controlled humidity exposure”, IEEE 57th Holm Conference Electrical Contacts, (2011)
[52] B. Horvath, B. Illes, T. Shinohara, and G. Harsanyi, “Effects of humidity on tin whisker growth investigated on Ni and Ag underplated layer construction”, Thin Solid Films, 520, 384 (2011)
[53] Y. Mizuguchi, Y. Murakami, S. Tomiya, T. Asai, T. Kiga, and K. Suganuma, “Effect of crystal orientation on mechanically induced Sn whiskers on Sn-Cu plating”, Journal of Electronic Materials, 41, 1859 (2012)
[54] Y. Mizuguchi, Y. Murakami, S. Tomiya, T. Asai, T. Kiga, and K. Suganuma, “Effect of crystal orientation of Sn whisker-free Sn-Ag-Cu Plating”, Materials Transactions, 53, 2078 (2012)
[55] W. H. Chen, P. Sarobol, J. R. Holaday, C. A. Handwerker, and J. E. Blendell, “Effect of crystallographic texture, anisotropic elasticity, and thermal expansion on whisker formation on β-Sn thin films”, Journal of Materials Research, 29, 197 (2014)
[56] P. Sarobol, W. H. Chen, A. E. Pedigo, P. Su, J. E. Blendell, and C. A. Handwerker, “Effects of local grain misorientation and β-Sn elastic anisotropy on whisker and hillock formation”, Journal of Materials Research, 28, 747 (2013)
[57] P. Sarobol, J. P. Koppes, W. H. Chen, P. Su, J. E. Blendell, and C. A. Handwerker, “Recrystallization as a nucleation mechanism for whiskers and hillocks on thermal cycled Sn-alloy solder films”, Materials Letters, 99, 76 (2013)
[58] P. Sarobol, Y. Wang, W. H. Chen, A. E. Pedigo, J. P. Koppes, J. E. Blendell, and C. A. Handwerker, “A Predictive model for whisker formation based on local microstructure and grain boundary properties”, The Journal of The Minerals, Metals & Materials Society, 65, 1350 (2013)
[59] J. B. LeBret, and M. G. Norton, “Electron microscopy study of tin whisker growth”, Journal of Materials Research, 18, 585 (2003)
[60] A. Frye, G. T. Galyon, and L. Palmer, “Crystallographic texture and whiskers in electrodeposited tin films”, IEEE Transactions on Electronics Manufacturing, 30, 2 (2007)
[61] J. Stein, U. Welzel, A. Leineweber, W. Huegel, and E. J. Mittemeijer, “The crystallographic growth directions of Sn whiskers”, Acta Materialia, 86, 102 (2015)
[62] W. J. Choi, T. Y. Lee, K. N. Tu, N. Tamura, R. S. Celestre, A. A. MacDowell, Y. Y. Bong, and L. Nguyen, “Tin whiskers studied by synchrotron radiation scanning X-ray micro-diffraction”, Acta Materialia, 51, 6253 (2003)
[63] F. Pei, N. Jadhav, and E. Chason, “Correlation between surface morphology evolution and grain structure: whisker/hillock formation in Sn-Cu”, The Journal of The Minerals, Metals & Materials Society, 64, 1176 (2012)
[64] F. Pei, N. Jadhav, and E. Chason, “Correlating whisker growth and grain structure on Sn-Cu samples by real-time scanning electron microscopy and backscattering diffraction characterization”, Applied Physics Letters, 100, 221902 (2012)
[65] C. C. Wei, P. C. Liu, C. Chen, J. C. B. Lee, and I. P. Wang, “Relieving Sn whisker growth driven by oxidation on Cu leadframe by annealing and reflowing treatments”, Journal of Applied Physics, 102, 043521 (2007)
[66] Y. Fukuda, M. Osterman, and M. Pecht, “The effect of annealing on tin whisker growth”, IEEE Transactions on Electronics Packaging Manufacturing, 29, 252 (2006)
[67] M. Sobiech, U. Welzel, R. Schuster, E. J. Mittemeijer, W. Hugel, A. Seekamp, and V. Muller, “The microstructure and state of stress of Sn thin films after post-plating annealing: an explanation for the suppression of whisker formation”, Proceedings of the 57th Electronic Components and Technology Conference, ECTC’07, 192 (2007)
[68] S. Mathew, M. Osterman, T. Shibutani, Q. Yu, and M. Pecht, “Tin whiskers: how to mitigate and manage the risks”, International Symposium on High Density Packaging and Microsystem Integration, 1 (2007)
[69] K. S. Kim, J. H. Kim, and S. W. Han., “The effect of postbake treatment on whisker growth under high temperature and humidity conditions on tin-plated Cu substrates”, Materials Letters, 62, 1867 (2008)
[70] Y. C. Lin, J. G. Duh, and B. S. Chiou, “Wettability of electroplated Ni-P in under bump metallurgy with Sn-Ag-Cu solder”, Journal of Electronic Materials, 35, 7 (2006)
[71] B. L. Young, and J. G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn58Bi solder during annealing”, Journal of Electronic Materials, 30, 878 (2001)
[72] J. W. Jang, P. G. Kim, K. N. Tu, D. R. Frear, and P. Thompson “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology”, Journal of Applied Physics, 85, 8456 (1999)
[73] Mona, A. Kumar, and Z. Chen, “Influence of phosphorus content on the interfacial microstructure between Sn-3.5Ag solder and electroless Ni-P metallization on Cu substrate”, Electronic Packaging Technology Conference, 503 (2005)
[74] W. J. Tomlinson, and M. W. Carroll, “Substrate roughness, deposit thickness and the corrosion of electroless nickel coating”, Journal of Materials Science, 25, 4972 (1990)
[75] J. W. Yoon, and S. B. Jung, “Effect of isothermal aging on the interfacial reactions between Sn-0.4Cu solder and Cu substrate with or without ENIG plating layer”, Surface and Coating Technology, 200, 4440 (2006)
[76] K. N. Tu, J. O. Suh, A. T. C. Wu, N. Tamura, and C. H. Ting, “Mechanism and prevention of spontaneous tin whisker growth”, Materials Transactions, 46, 2300 (2005)
[77] Y. W. Yen, W. K. Liou, and C. C. Jao, “Investigation of interfacial reactions and Sn whisker formation in the matte Sn layer with NiP/Ni/Cu and Ni/Cu multilayer systems”, IEEE Transactions on Components, Packaging and Manufacturing Technology, 1, 951 (2011)
[78] M. Dittes, P. Oberndorff, and L. Petit, “Tin whisker formation results test methods and countermeasures”, Electronic Components and Technology Conference, 822 (2003)
[79] A. Baated, K. S. Kim, and K. Suganuma, “Effect of intermetallic growth rate on spontaneous whisker growth from a tin coating on copper”, Journal of Materials Science: Materials in Electronics, 22, 1685 (2011)
[80] J. L. Jo, T. Sugahara, M. Tsujimoto, and K. Suganuma, “Influence of tin plating thickness on whisker growth during thermal cycling”, Electronic System-Integration Technology Conference, 1 (2012)
[81] N. Jadhav, E. J. Buchovecky, L. Reinbold, S. Kumar, A. F. Bower, and E. Chason, “Understanding the correlation between intermetallic growth, stress evolution, and Sn whisker nucleation”, IEEE Transactions on Electronics Packaging Manufacturing, 33, 183 (2010)
[82] K. W. Moon, M. E. Williams, C. E. Johnson, G. R. Stafford, C. A. Handwerker, and W. J. Boettinger, “The formation of whiskers on electroplated tin containing copper”, Proceedings of the 4th Pacific Rim International Conference on Advanced Materials and Processing, 1115 (2001)
[83] T. Liu, D. Ding, Y. Hu, and Y. Gong, “Tin whisker growth on electroplated Sn multilayers”, Journal of Materials Science: Materials in Electronics, 26, 6411 (2015)
[84] C. Xu, Y. Zhang, C. Fan, and J. A. Abys, “Driving force for the formation of Sn whiskers: compressive stress-pathways for its generation and remedies for its elimination and minimization”, IEEE Transactions on Electronics Packaging Manufacturing, 28, 31 (2005)
[85] V. K. Glazunova, and N. T. Kudryavtsev, “An investigation of the conditions of spontaneous growth of filiform crystals on electrolytic coatings”, Journal of Applied Chemistry, translated form Zhurnal Prikladnoi Khimii, 36, 543 (1963)
[86] H. J. Kao, W. C. Wu, S. T. Tsai, and C. Y. Liu, “Effect of Cu additives on Sn whisker formation of Sn(Cu) finishes”, Journal of Electronic Materials, 35,1885 (2006)
[87] E. Chason, N. Jadhav, and F. Pei, “Effect of layer properties on stress evolution, intermetallic volume, and density during tin whisker formation”, JOM, 63, 62 (2011)
[88] J. L. Jo, K. S. Kim, T. Sugahara, S. Nagao, K. Hamasaki, M. Tsujimoto, and K. Suganuma, “Least lead addition to mitigate tin whisker for ambient storage”, Journal of Materials Science: Materials in Electronics, 24, 3108 (2013)
[89] W. Zhang, and F. Schwager, “Effects of lead on tin whisker elimination”, Journal of The Electrochemical Society, 153, C337 (2006)
[90] E. Chason, N. Jadhav, W. L. Chan, L. Reinbold, and K. S. Kumar, “Whisker formation in Sn and Pb-Sn coatings: role of intermetallic growth, stress evolution, and plastic deformation processes”, Applied Physics Letters, 92, 171901 (2008)
[91] A. Dimitrovska, and R. Kovacevic, “The effect of micro-alloying of Sn plating on mitigation of Sn whisker growth”, Journal of Electronic Materials, 38, 2726 (2009)
[92] A. Baated, K. Hamasaki, S. S. Kim, K. S. Kim, and K. Suganuma, “Whisker growth behavior of Sn and Sn alloy lead-free finishes”, Journal of Electronic Materials, 40, 2278 (2011)
[93] L. Ma, Y. Zuo, S. Liu, and F. Guo, “Whisker growth behavior of Sn58Bi solder coating under isothermal aging”, Journal of Electronic Materials, 45, 44 (2016)
[94] L. Meinshausen, S. Bhassyvasantha, B. S. Majumdar, and I. Dutta, “Influence of indium addition on whisker mitigation in electroplated tin coatings on copper substrate”, Journal of Electronic Materials, 45, 791 (2016)
[95] J. Chang, S. K. Seo, M. G. Cho, D. N. Lee, K. S. Kang, and H. M. Lee, “Effects of Be and Co addition on the growth of Sn whiskers and the properties of Sn-baesd Pb-free solders”, Journal of Materials Research, 27, 1877 (2012)
[96] J. L. Jo, S. Nagao, K. Hamasaki, M. Tsujimoto, T. Sugahara, and K. Suganuma, “Mitigation of Sn whisker growth by Bi additions”, Journal of Electronic Materials, 43, 1 (2013)
[97] N. Jadhav, M. Williams, F. Pei, G. Stafford, and E. Chason, “Altering the mechanical properties of Sn films by alloying with Bi: mimicking the effect of Pb to suppress whiskers”, Journal of Electronic Materials, 42, 312 (2012)
[98] A. T. Wu, and Y. C. Ding, “The suppression of tin whisker growth by the coating of tin oxide nano particles and surface treatment”, Microelectronics Reliability, 49, 318 (2009)
[99] K. S. Kim, S. S. Kim, Y. Yorikado, K. Suganuma, M. Tsujimoto, and I. Yanada, “Sn whisker growth on Sn plating with or without surface treatment during the room temperature exposure”, Journal of Alloys and Compounds, 558, 125 (2013)
[100] E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, “Origin of compressive residual stress in polycrystalline thin films”, Physical Review Letters, 88, 156103 (2002)
[101] S. H. Na, M. R. Lee, H. S. Park, H. K. Kim, and S. J. Suh, “Effect of a high-temperature pre-bake treatment on whisker formation under various thermal and humidity conditions for electrodeposited tin films on copper substrates”, Metals and Materials International, 20, 367 (2014)
[102] H. X. Lee, K. Y. Chan, and M. Hamdi, “Effects of annealing on Sn whisker formation under temperature cycling and isothermal storage conditions”, IEEE Transactions on Components, Packaging and Manufacturing Technology, 1, 1 (2011)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔