|
[1] W. Pietsch, Agglomeration processes: phenomena, technologies, equipment. Wiley-VCH, New York, USA (2008). [2] G. Rowland, Adhesives and adhesion. Chem. Nz. 71, 17 (1998). [3] J. Thornton, Adhesives and adhesion. Buffalo State College (2005). [4] W. C. Wake, Theories of adhesion and uses of adhesives: a review. Polymer 19, 291-308 (1978). [5] 顧繼友,膠接理論與膠接基礎,科學出版社,北京,中國 (2003)。 [6] C. L. Weidner and G. J. Crocker, Elastomeric Adhesion and Adhesives. Rubb. Chem. Technol. 33, 1323-1374 (1960). [7] S. Brunauer, L. S. Deming, W. E. Deming and E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723-1732 (1940). [8] A. Dąbrowski, Adsorption-From theory to practice. Adv. Colloid Interface Sci. 93, 135-224 (2001). [9] S. S. Dukhin, G. Kretzschmar and R. Miller, Dynamics of adsorption at liquid interfaces: theory, experiment, application. Elsevier Science B. V., Amsterdam, Netherlands (1995). [10] M. Iwamatsu and K. Horii, Capillary condensation and adhesion of two wetter surfaces. J. colloid interface sci. 182, 400-406 (1996). [11] S. M. Skinner, L. S. Robert and J. E. Rutzler Jr, Electrical phenomena in adhesion. I. Electron atmospheres in dielectrics." J. Appl. Phys. 24, 438-450 (1953). [12] J. W. McBain and D. G. Hopkins, On adhesives and adhesive action. J. Phys. Chem. 29, 188-204 (1925). [13] B. V. Deryagin and N. A. Krotova, Electrical theory of adhesion of films to solid surfaces and its experimental foundation. Usp. Fiz. Nauk. 36, 387-406 (1948). [14] M. Hermansson, The DLVO theory in microbial adhesion. Colloids Surf. B: Biointerfaces 14, 105-119 (1999). [15] B. V. Deryagin, Problems of adhesion. Prog. Surf. Sci. 45, 223-231 (1994). [16] S. S. Voiutskii, Autohesion and adhesion of high polymers. Wiley-VCH, New York, USA (1963). [17] S. S. Voyutskiĭ, The diffusion theory of adhesion. Rubb. Chem. Technol. 33, 748-756 (1960). [18] S. S. Voyutskii and V. L. Vakula, The role of diffusion phenomena in polymer‐to‐polymer adhesion. J. Appl. Polym. Sci. 7, 475-491 (1963). [19] A. J. Kinloch, Adhesion and adhesives: science and technology. Springer-Science & Business Media, Berlin, Germany (2012). [20] S. R. Hartshorn, Structural adhesives: chemistry and technology. Springer Science & Business Media, Berlin, Germany (2012). [21] J. G. Kirkwood and P. B. Frank, The statistical mechanical theory of surface tension. J. Chem. Phys. 17, 338-343 (1949). [22] D. E. Packham, The mechanical theory of adhesion-Changing perceptions 1925-1991. J. Adhesion 39, 137-144 (1992). [23] D. E. Packham, Chapter 4. The mechanical theory of adhesion, Handbook of adhesive technology, Marcel Dekker, New York, USA (2003). [24] D. E. Packham, The mechanical theory of adhesion–A seventy year perspective and its current status. First International Congress on Adhesion Science and Technology. (1998) [25] G. P. Anderson, S. J. Bennett and K. L. Devries, Analysis and testing of adhesive bonds. NTRS, 273 (1977). [26] E. M. Liston and M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review. J. Adhesion Sci. Tech. 7, 1091-1127 (1993). [27] E. L. Florin, T. M. Vincent and E. G. Hermann, Adhesion forces between individual ligand-receptor pairs. Science 264,415-417 (1994). [28] W. C. Wake, The rheology of adhesives. Adhesion,191-206 (1961). [29] K. L. Mittal, Adhesion aspects of metallization of organic polymer surfaces. J. Vac. Sci. Technol., 13, 19-25 (1976). [30] C. J. Wu, S. M. Chen, Y. J. Sheng and H. K. Tsao, Anti-oxidative copper nanoparticles and their conductive assembly sintered at room temperature. J. Taiwan Inst. Chem. Eng. 45, 2719-2724 (2014). [31] C. J. Wu, S. L. Cheng, Y. J. Sheng and H. K. Tsao, Reduction-assisted sintering of micron-sized copper powders at low temperature by ethanol vapor. RSC Adv. 5, 53275-53279 (2015). [32] J. Xiong, Y. Wang, Q Xue and X. Wu, Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem.13, 900-904 (2011). [33] C. J. Wu, Y. J. Sheng and H. K. Tsao, Copper conductive lines on flexible substrates fabricated at room temperature. J. Mater. Chem. C 4, 3274-3280 (2016). [34] P. G. de Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena, Springer, New York, USA (2004). [35] F. M. Chang, S. J. Hong, Y. J. Sheng and H. K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects." Appl. Phys. Letters 95, 064102 (2009). [36] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia and L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114-4119 (2008). [37] J. S. Rowlinson and B. Widom, Molecular theory of capillarity. The international series of monographs on chemistry. Clarendon (1982). [38] R. N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988-994 (1936). [39] A. B. D. Cassie and S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546-551 (1944). [40] R. E. Johnson Jr and R.H. Dettre, Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J. phys. chem. 68, 1744-1750 (1964). [41] J. F. Joanny, P. G. de Gennes, A model for contact angle hysteresis. J. Chem. Phys. 81, 552-562 (1984). [42] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng and H. K. Tsao, Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning. Langmuir 27, 6890-6896 (2011). [43] E. Rame, The interpretation of dynamic contact angles measured by the Wilhelmy plate method. J. colloid interface sci. 185, 245-251 (1997). [44] Standard, A. S. T. M., D1002-10. Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (Metal-to-Metal). West Conshohocken, PA: ASTM International. doi: 10.1520/D1002-10." [45] S. Wang, M. Li and Q. Lu, Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl. Mater. Interface 2, 677-683 (2010). [46] C. C. Chang, C. J. Wu, Y. J. Sheng and H. K. Tsao, Air pocket stability and the imbibition pathway in droplet wetting. Soft matter 11, 7308-7315 (2015). [47] A. G. Gaonkar and A. McPherson, Ingredient interactions: effects on food quality. CRC Press, New York, USA (2005).
|