(3.236.6.6) 您好!臺灣時間:2021/04/22 18:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝之翊
研究生(外文):Chih-Yi Hsieh
論文名稱:二氧化錫薄膜之負電阻特性研究
論文名稱(外文):Study of negative differential resistance characteristic in tin oxide thin film
指導教授:劉正毓
指導教授(外文):Cheng-Yi Liu
學位類別:博士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:69
中文關鍵詞:負電阻二氧化錫薄膜穿隧二極體
外文關鍵詞:Negative differential resistanceNDRSnO2thin filmtunnel diode
相關次數:
  • 被引用被引用:1
  • 點閱點閱:224
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文研究之目的為探討二氧化錫薄膜中兩種不同的負電阻機制以及特性。第一部份為典型的穿隧二極體,著重在p-n介面形成之機制。以二氧化錫薄膜摻雜氮化鋁,氮離子取代氧離子貢獻電洞產生p+區域,鋁的氧化反應產生氧空缺貢獻電子並產生n+區域,藉由光電子能譜儀XPS分析可得知,氮離子與鋁離子在二氧化錫中的擴散速率存在差異,透過擴散速率差異可形成p+-AlN:SnO2/n+-Al:SnO¬2之穿隧介面,進而得到具有顯著負電阻特性之穿隧二極體。第二部分則是提出新穎的負電阻機制,透過操作二氧化錫薄膜對氧氣的高敏感度性質,在單一結構且組成均勻的二氧化錫薄膜中,可以量測到具有顯著負電阻特性的電壓電流曲線,經過文獻蒐集後發現,實驗結果無法以任何現有的負電阻機制解釋。由實驗結果可得知,由於二氧化錫薄膜在高濃度的氧氣環境下會形成大量存在間隙位置的氧原子,並生成可侷限電子的陷阱。在施加外加電場的情況下,流經陷阱的電子會被侷限,並在薄膜內部形成與外加電場方向相反的內建電場,降低電流進而產生負電阻特性,因此,電流密度與陷阱密度會是決定負電阻特性的關鍵性質,而透過電荷累積與電場及電位的計算,可得到與實驗數據相符的內建電場變化及電壓-電流曲線,經過交叉驗證後提出一個創新且完整的負電阻機制。
In this study, two type of negative differential resistance in SnO2 thin film are discussed. Chapter 1 introduces the mechanism of negative differential resistance. In Chapter 2, we focus on the common negative differential resistance device, a simple structure of p+-AlN:SnO2/n+Al:SnO2 tunnel diode was fabricated. The characteristic of negative differential resistance and the formation mechanism of the p+ and the n+ region are discussed. This tunnel diode shows a remarkable negative differential resistance current-voltage characteristic. The N3--O-2 substitution creates hole carriers and forms the p+-type region. The oxidation of Al atoms induces the oxygen vacancies and further creates the electrons, which is the n+-type region. The difference of diffusion rate can be observed in the X-ray photoelectron spectroscopy, and it is the key to form the p+/n+ tunnel junction. A new mechanism of negative differential resistance is proposed in Chapter 3 . The oxygen sensitive property of SnO2 was manipulated to form the negative differential resistance device, which had one single structure and the uniform component. The remarkable negative differential resistance characteristics can also be observed in this SnO2 thin film. But, there is no available mechanism can be used to explain the phenomenon of this negative differential resistance device. According to the experimental results, the high oxygen partial pressure during sputtering process induces the interstitial oxygen, and the interstitial oxygen will be the trap centers for electrons. As a voltage was applied to this device, the electrons will be trapped at the trap centers and form an accumulation region. The accumulation region further forms a built-in potential, which is against the applied voltage and reduces the current. The built-in potential under various applied voltages is the key to form the negative differential resistance characteristic. The quantity of trapped electrons shows positive correlation to the current density and the density of trap center. By these concepts, a mathematical model can be established. The mathematical model matches the tendency of the experimental results.
Table of contents
中文摘要 I
Abstract II
Table of contents IV
List of figures V
List of tables VII
Chapter 1 Introduction 1
1.1 Transparent conductive oxide 1
1.2 Transparent conductive tin oxide 2
1.3 Negative resistance 3
1.4 Negative differential resistance 6
Chapter 2 The study of p-AlN:SnO2/n-SnO2 tunnel diode 10
2.1 Introduction 10
2.2 Experimental procedure 11
2.3 Results and discussions 12
(A) Structure and I-V characteristic analysis 12
(B) Proof of the tunneling effect 14
(C) Formation of the degenerate region 17
Chapter 3 Mechanism of NDR behaviors in undoped SnO2 thin film 23
3.1 Introduction 23
3.2 Experimental procedure 24
3.3 Results and discussions 25
(A) Electrical properties of the undoped SnO2 thin films 25
(B) Photoluminescence spectrum analysis 33
(C) Mechanism of negative differential resistance 36
(D) Proof of the charge trapping mechanism 42
Chapter 4 Summary 54
Reference 55


[1] J. K. Kim, T. Gessmann, E. F. Schubert, J.-Q. Xi, H. Luo, J. Cho, et al., "GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer," Applied Physics Letters, Vol. 88, p. 013501, 2006.
[2] A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, "Localized irradiation effects on tunnel diode transitions in multi-junction concentrator solar cells," Solar Energy Materials and Solar Cells, Vol. 93, pp. 1692-1695, Sep 2009.
[3] M. Yamaguchi, "III–V compound multi-junction solar cells: present and future," Solar Energy Materials and Solar Cells, Vol. 75, pp. 261-269, 1// 2003.
[4] B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y. Hwang, et al., "Transparent conductive Al-doped ZnO films for liquid crystal displays," Journal of Applied Physics, Vol. 99, p. 124505, 2006.
[5] Y. Leterrier, L. Médico, F. Demarco, J. A. E. Månson, U. Betz, M. F. Escolà, et al., "Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays," Thin Solid Films, Vol. 460, pp. 156-166, 7/22/ 2004.
[6] H. Aswin, K. Taweewat, Y. Ihsanul Afdi, M. Shinsuke, and K. Makoto, "ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells," Applied Physics Express, Vol. 3, p. 051102, 2010.
[7] L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, "High-performance transparent inorganic-organic hybrid thin-film n-type transistors," Nat Mater, Vol. 5, pp. 893-900, Nov 2006.
[8] G. Shen, J. Xu, X. Wang, H. Huang, and D. Chen, "Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications," Adv Mater, Vol. 23, pp. 771-5, Feb 8 2011.
[9] S. H. Chae, W. J. Yu, J. J. Bae, D. L. Duong, D. Perello, H. Y. Jeong, et al., "Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors," Nat Mater, Vol. 12, pp. 403-9, May 2013.
[10] S. Tamura, T. Ishida, H. Magara, T. Mihara, O. Tabata, and T. Tatsuta, "Transparent conductive tin oxide films by photochemical vapour deposition," Thin Solid Films, Vol. 343–344, pp. 142-144, 4// 1999.
[11] K. Von Rottkay and M. Rubin, "Optical Indices of Pyrolytic Tin-Oxide Glass," MRS Online Proceedings Library Archive, Vol. 426, pp. null-null, 1996.
[12] Y.-S. He, J. C. Campbell, R. C. Murphy, M. F. Arendt, and J. S. Swinnea, "Electrical and optical characterization of Sb : SnO2," Journal of Materials Research, Vol. 8, pp. 3131-3134, 1993.
[13] B. Orel, U. Lavrenčič‐Štangar, and K. Kalcher, "Electrochemical and Structural Properties of SnO2 and Sb : SnO2 Transparent Electrodes with Mixed Electronically Conductive and Ion‐Storage Characteristics," Journal of The Electrochemical Society, Vol. 141, pp. L127-L130, September 1, 1994 1994.
[14] M. Turrión, J. Bisquert, and P. Salvador, "Flatband Potential of F:SnO2 in a TiO2 Dye-Sensitized Solar Cell: An Interference Reflection Study," The Journal of Physical Chemistry B, Vol. 107, pp. 9397-9403, 2003/09/01 2003.
[15] Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, and L. Zheng, "High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire," Journal of the American Chemical Society, Vol. 129, pp. 6070-6071, 2007/05/01 2007.
[16] J. Szuber, G. Czempik, R. Larciprete, D. Koziej, and B. Adamowicz, "XPS study of the L-CVD deposited SnO2 thin films exposed to oxygen and hydrogen," Thin Solid Films, Vol. 391, pp. 198-203, 7/16/ 2001.
[17] S. W. Amos and R. Amos, Newnes dictionary of electronics: Newnes, 2002.
[18] A. Guha, A. K. Raychaudhuri, A. R. Raju, and C. N. R. Rao, "Nonlinear conduction in charge-ordered ${\mathrm{Pr}}_{0.63}{\mathrm{Ca}}_{0.37}{\mathrm{MnO}}_{3}:$ Effect of magnetic fields," Physical Review B, Vol. 62, pp. 5320-5323, 09/01/ 2000.
[19] C. H. Jia, X. W. Sun, G. Q. Li, Y. H. Chen, and W. F. Zhang, "Origin of attendant phenomena of bipolar resistive switching and negative differential resistance in SrTiO3:Nb/ZnO heterojunctions," Applied Physics Letters, Vol. 104, p. 043501, 2014.
[20] T. Masahiro, S. Hiroyuki, and Y. Junji, "Room Temperature Observation of Differential Negative Resistance in an AlAs/GaAs/AlAs Resonant Tunneling Diode," Japanese Journal of Applied Physics, Vol. 24, p. L466, 1985.
[21] F. W. Sheard and G. A. Toombs, "Space‐charge buildup and bistability in resonant‐tunneling double‐barrier structures," Applied Physics Letters, Vol. 52, pp. 1228-1230, 1988.
[22] C. H. Jia, X. W. Sun, G. Q. Li, Y. H. Chen, and W. F. Zhang, "Origin of attendant phenomena of bipolar resistive switching and negative differential resistance in SrTiO3:Nb/ZnO heterojunctions," Applied Physics Letters, Vol. 104, pp. -, 2014.
[23] G. Yang, C. H. Jia, Y. H. Chen, X. Chen, and W. F. Zhang, "Negative differential resistance and resistance switching behaviors in BaTiO3 thin films," Journal of Applied Physics, Vol. 115, p. 204515, 2014.
[24] X. Liu, M. T. Mayer, and D. Wang, "Negative differential resistance and resistive switching behaviors in Cu2S nanowire devices," Applied Physics Letters, Vol. 96, p. 223103, 2010.
[25] B. Govoreanu, C. Adelmann, A. Redolfi, L. Q. Zhang, S. Clima, and M. Jurczak, "High-Performance Metal-Insulator-Metal Tunnel Diode Selectors," Ieee Electron Device Letters, Vol. 35, pp. 63-65, Jan 2014.
[26] A. Kathalingam, H.-S. Kim, S.-D. Kim, H.-M. Park, and H.-C. Park, "Unipolar resistive switching of solution synthesized ZnO nanorod with self-rectifying and Negative Differential Resistance effects," Materials Letters, Vol. 142, pp. 238-241, 3/1/ 2015.
[27] S. L. Chen, P. B. Griffin, and J. D. Plummer, "Negative Differential Resistance Circuit Design and Memory Applications," IEEE Transactions on Electron Devices, Vol. 56, pp. 634-640, 2009.
[28] F. Capasso, S. Sen, A. Y. Cho, and D. Sivco, "Resonant tunneling devices with multiple negative differential resistance and demonstration of a three-state memory cell for multiple-valued logic applications," IEEE Electron Device Letters, Vol. 8, pp. 297-299, 1987.
[29] R. Duschl, O. G. Schmidt, and K. Eberl, "Epitaxially grown Si/SiGe interband tunneling diodes with high room-temperature peak-to-valley ratio," Applied Physics Letters, Vol. 76, pp. 879-881, Feb 14 2000.
[30] W. Y. Fung, L. Chen, and W. Lu, "Esaki tunnel diodes based on vertical Si-Ge nanowire heterojunctions," Applied Physics Letters, Vol. 99, p. 092108, Aug 29 2011.
[31] S. Hwan Lee, M. Sup Choi, J. Lee, C. Ho Ra, X. Liu, E. Hwang, et al., "High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure," Applied Physics Letters, Vol. 104, p. 053103, 2014.
[32] S. Krishnamoorthy, F. Akyol, P. S. Park, and S. Rajan, "Low resistance GaN/InGaN/GaN tunnel junctions," Applied Physics Letters, Vol. 102, p. 113503, Mar 18 2013.
[33] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, et al., "Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In/sub 0.3/Ga/sub 0.7/N/GaN short-period superlattice tunneling contact layer," Electron Device Letters, IEEE, Vol. 22, pp. 460-462, 2001.
[34] L. Esaki, "Discovery of the tunnel diode," Electron Devices, IEEE Transactions on, Vol. 23, pp. 644-647, 1976.
[35] J.-H. Lee and J.-H. Lee, "High-Power InGaN-Based LED With Tunneling-Junction-Induced Two-Dimensional Electron Gas at AlGaN/GaN Heterostructure," IEEE Transactions on Electron Devices, Vol. 58, pp. 3058-3064, 2011.
[36] M. Oehme, M. Sarlija, D. Hahnel, M. Kaschel, J. Werner, E. Kasper, et al., "Very High Room-Temperature Peak-to-Valley Current Ratio in Si Esaki Tunneling Diodes (March 2010)," Ieee Transactions on Electron Devices, Vol. 57, pp. 2857-2863, Nov 2010.
[37] C. D. Bessire, M. T. Bjork, H. Schmid, A. Schenk, K. B. Reuter, and H. Riel, "Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes," Nano Lett, Vol. 11, pp. 4195-9, Oct 12 2011.
[38] B. Ganjipour, A. W. Dey, B. M. Borg, M. Ek, M. E. Pistol, K. A. Dick, et al., "High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires," Nano Lett, Vol. 11, pp. 4222-6, Oct 12 2011.
[39] S. Krishnamoorthy, T. F. Kent, J. Yang, P. S. Park, R. C. Myers, and S. Rajan, "GdN nanoisland-based GaN tunnel junctions," Nano Lett, Vol. 13, pp. 2570-5, Jun 12 2013.
[40] M. Saldaña Jimenez and C. A. Dartora, "The characteristics of a graphene tunnel diode," Physica E: Low-dimensional Systems and Nanostructures, Vol. 59, pp. 1-5, 2014.
[41] T. Kawabe, K. Tabata, E. Suzuki, Y. Yamaguchi, and Y. Nagasawa, "Electronic states of chemisorbed oxygen species and their mutually related studies on SnO2 thin film," Journal of Physical Chemistry B, Vol. 105, pp. 4239-4244, May 17 2001.
[42] S. Bhattacharyya, S. J. Henley, E. Mendoza, L. Gomez-Rojas, J. Allam, and S. R. P. Silva, "Resonant tunnelling and fast switching in amorphous-carbon quantum-well structures," Nature Materials, Vol. 5, pp. 19-22, 2005.
[43] J. A. COPELAND, "Theoretical Study of a Gunn Diode in a Resonant Circuit."
[44] O. Yilmazoglu, K. Mutamba, D. Pavlidis, and T. Karaduman, "Measured negative differential resistivity for GaN Gunn diodes on GaN substrate," Electronics Letters, Vol. 43, p. 480, 2007.
[45] M. Montes Bajo, G. Dunn, A. Stephen, A. Khalid, D. R. S. Cumming, C. H. Oxley, et al., "Impact ionisation electroluminescence in planar GaAs-based heterostructure Gunn diodes: Spatial distribution and impact of doping non-uniformities," Journal of Applied Physics, Vol. 113, p. 124505, 2013.
[46] J. B. Gunn, "Microwave oscillations of current in III–V semiconductors," Solid State Communications, Vol. 1, pp. 88-91, 1963/09/01 1963.
[47] T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, et al., "Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array," Current Applied Physics, Vol. 11, pp. 1253-1256, 2011.
[48] S. Kim, S. Kim, J. Park, S. Ju, and S. Mohammadi, "Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry," ACS Nano, Vol. 4, pp. 2994-8, Jun 22 2010.
[49] S. Ju, J. Li, J. Liu, P. C. Chen, Y. G. Ha, F. Ishikawa, et al., "Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry," Nano Lett, Vol. 8, pp. 997-1004, Apr 2008.
[50] G. Q. Han, P. F. Guo, Y. Yang, C. L. Zhan, Q. A. Zhou, and Y. C. Yeo, "Silicon-based tunneling field-effect transistor with elevated germanium source formed on (110) silicon substrate," Applied Physics Letters, Vol. 98, p. 153502, Apr 11 2011.
[51] A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches," Nature, Vol. 479, pp. 329-37, Nov 17 2011.
[52] P. F. Guo, Y. Yang, Y. B. Cheng, G. Q. Han, J. S. Pan, Ivana, et al., "Tunneling field-effect transistor with Ge/In0.53Ga0.47As heterostructure as tunneling junction," Journal of Applied Physics, Vol. 113, p. 094502, Mar 7 2013.
[53] C. Woo Young, P. Byung-Gook, L. Jong Duk, and L. Tsu-Jae King, "Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec," IEEE Electron Device Letters, Vol. 28, pp. 743-745, 2007.
[54] R. Gandhi, C. Zhixian, N. Singh, K. Banerjee, and L. Sungjoo, "Vertical Si-Nanowire n -Type Tunneling FETs With Low Subthreshold Swing ( \leq \hbox {50} \hbox {mV/decade} ) at Room Temperature," Electron Device Letters, IEEE, Vol. 32, pp. 437-439, 2011.
[55] J. C. C. Fan and J. B. Goodenough, "X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films," Journal of Applied Physics, Vol. 48, p. 3524, 1977.
[56] T. Nütz, U. z. Felde, and M. Haase, "Wet-chemical synthesis of doped nanoparticles: Blue-colored colloids of n-doped SnO[sub 2]:Sb," The Journal of Chemical Physics, Vol. 110, p. 12142, 1999.
[57] Y. S. Liu, C. I. Hsieh, Y. J. Wu, Y. S. Wei, P. M. Lee, and C. Y. Liu, "Transparent p-type AlN:SnO2 and p-AlN:SnO2/n-SnO2:In2O3 p-n junction fabrication," Applied Physics Letters, Vol. 101, p. 122107, Sep 17 2012.
[58] S. S. Pan, S. Wang, Y. X. Zhang, Y. Y. Luo, F. Y. Kong, S. C. Xu, et al., "p-type conduction in nitrogen-doped SnO2 films grown by thermal processing of tin nitride films," Applied Physics a-Materials Science & Processing, Vol. 109, pp. 267-271, Nov 2012.
[59] K. G. Godinho, A. Walsh, and G. W. Watson, "Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2," Journal of Physical Chemistry C, Vol. 113, pp. 439-448, Jan 8 2009.
[60] R. G. Egdell, S. Eriksen, and W. R. Flavell, "Oxygen deficient SnO2 (110) and TiO2 (110): A comparative study by photoemission," Solid State Communications, Vol. 60, pp. 835-838, 12// 1986.
[61] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, et al., "X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films," Applied Surface Science, Vol. 158, pp. 134-140, May 2000.
[62] V. Senthilkumar, P. Vickraman, M. Jayachandran, and C. Sanjeeviraja, "Structural and electrical studies of nano structured Sn1−x Sb x O2 (x = 0.0, 1, 2.5, 4.5 and 7 at%) prepared by co-precipitation method," Journal of Materials Science: Materials in Electronics, Vol. 21, pp. 343-348, 2009.
[63] J. F. Chien, H. Y. Shih, H. Y. Liao, R. M. Lin, J. J. Shyue, and M. J. Chen, "P-type Conductivity of MgZnO:(N:Ga) Thin Films Prepared by Remote Plasma In-Situ Atomic Layer Doping," Ecs Journal of Solid State Science and Technology, Vol. 2, pp. R249-R253, 2013.
[64] X. Y. Gan, X. H. Zheng, Y. Y. Wu, S. L. Lu, H. Yang, M. Arimochi, et al., "GaAs tunnel junction grown using tellurium and magnesium as dopants by solid-state molecular beam epitaxy," Japanese Journal of Applied Physics, Vol. 53, p. 021201, Feb 2014.
[65] L. Esaki and R. Tsu, "Superlattice and Negative Differential Conductivity in Semiconductors," IBM Journal of Research and Development, Vol. 14, pp. 61-65, 1970.
[66] Q. Zhang, J. Qi, Y. Huang, X. Li, and Y. Zhang, "Negative differential resistance in ZnO nanowires induced by surface state modulation," Materials Chemistry and Physics, Vol. 131, pp. 258-261, 12/15/ 2011.
[67] J. Jeong, S. P. Choi, C. I. Chang, D. C. Shin, J. S. Park, B. T. Lee, et al., "Photoluminescence properties of SnO2 thin films grown by thermal CVD," Solid State Communications, Vol. 127, pp. 595-597, Sep 2003.


電子全文 電子全文(網際網路公開日期:20210718)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔