|
1. O’Regan, B.; Grätzel, M., A low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353 (6346), 737-740. 2. Anothumakkool, B.; Agrawal, I.; Bhange, S. N.; Soni, R.; Game, O.; Ogale, S. B.; Kurungot, S., Pt- and TCO-Free Flexible Cathode for DSSC from Highly Conducting and Flexible PEDOT Paper Prepared via in Situ Interfacial Polymerization. ACS Appl. Mater. Interfaces 2016, 8, 553−562. 3. (a) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110 (11), 6595-663; (b) Andrea Listorti, B. O. R., and James R Durrant, Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chem. Mater. 2011, 23, 3381–3399; (c) Rocca, D.; Gebauer, R.; De Angelis, F.; Nazeeruddin, M. K.; Baroni, S., Time-Dependent Density Functional Theory Study of Squaraine Dye-Sensitized Solar Cells. Chem. Phys. Lett. 2009, 475 (1-3), 49-53. 4. (a) Huang, W.-K.; Wu, H.-P.; Lin, P.-L.; Lee, Y.-P.; Diau, E. W.-G., Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Fluorine Substituents on Photovoltaic Performance. J. Phys. Chem. Lett. 2012, 3, 1830−1835; (b) Hsu, H.-Y.; Cheng, C.-W.; Huang, W.-K.; Lee, Y.-P.; Diau, E. W.-G., Femtosecond Infrared Transient Absorption Dynamics of Benzimidazole-Based Ruthenium Complexes on TiO2 Films for Dye Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 16904−16911. 5. Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M.; Grätzel, M., Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano 2009, 3 (10), 3103-3109. 6. Andersen, A. R.; Halme, J.; Lund, T.; Asghar, M. I.; Nguyen, P. T.; Miettunen, K.; Kemppainen, E.; Albrektsen, O., Charge Transport and Photocurrent Generation Characteristics in Dye Solar Cells Containing Thermally Degraded N719 Dye Molecules. J. Phys. Chem. C 2011, 115, 15598–15606. 7. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334 (6056), 629-634. 8. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Gratzel, M., Dye-Sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers. Nat Chem 2014, 6 (3), 242-247. 9. (a) Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P., Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chem. Mater. 2010, 22 (5), 1915-1925; (b) Gupta, A.; Kelson, M. M. A.; Armel, V.; Bilic, A.; Bhosale, S. V., N-Alkyl- and N-Aryl-Dithieno[3,2-b:2′,3′-d]Pyrrole-Containing Organic Dyes for Efficient Dye-Sensitized Solar Cells. Tetrahedron 2014, 70 (12), 2141-2150. 10. He, J.; Wu, W.; Hua, J.; Jiang, Y.; Qu, S.; Li, J.; Long, Y.; Tian, H., Bithiazole-Bridged Dyes for Dye-Sensitized Solar Cells with High Open Circuit Voltage Performance. J. Mater. Chem. 2011, 21 (16), 6054. 11. Kakiage, K.; Aoyama, Y.; Yano, T.; Otsuka, T.; Kyomen, T.; Unno, M.; Hanaya, M., An Achievement of over 12 Percent Efficiency in an Organic Dye-Sensitized Solar Cell. Chem. Commun. 2014, 50 (48), 6379-81. 12. (a) Baheti, A.; Thomas, K. R. J.; Li, C.-T.; Lee, C.-P.; Ho, K.-C., Fluorene-Based Sensitizers with a Phenothiazine Donor: Effect of Mode of Donor Tethering on the Performance of Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 2249−2262; (b) Katono, M.; Bessho, T.; Meng, S.; Humphry-Baker, R.; Rothenberger, G.; Zakeeruddin, S. M.; Kaxiras, E.; Grätzel, M., D-π-A Dye System Containing Cyano-Benzoic Acid as Anchoring Group for Dye-Sensitized Solar Cells. Langmuir 2011, 27, 14248–14252; (c) Ganesan, P.; Chandiran, A.; Gao, P.; Rajalingam, R.; Grätzel, M.; Nazeeruddin, M. K., Molecular Engineering of 2‑Quinolinone Based Anchoring Groups for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 16896−16903. 13. Ren, X.; Jiang, S.; Cha, M.; Zhou, G.; Wang, Z.-S., Thiophene-Bridged Double D-π-A Dye for Efficient Dye-Sensitized Solar Cell. Chem. Mater. 2012, 24 (17), 3493-3499. 14. Namuangruk, S.; Fukuda, R.; Ehara, M.; Meeprasert, J.; Khanasa, T.; Morada, S.; Kaewin, T.; Jungsuttiwong, S.; Sudyoadsuk, T.; Promarak, V., D-D-π-A-Type Organic Dyes for Dye-Sensitized Solar Cells with a Potential for Direct Electron Injection and a High Extinction Coefficient: Synthesis, Characterization, and Theoretical Investigation. J. Phys. Chem. C 2012, 116, 25653-25663. 15. (a) Ying, W. J.; Guo, F. L.; Li, J.; Zhang, Q.; Wu, W. J.; Tian, H.; Hua, J. L., Series of New D-A-p-A Organic Broadly Absorbing Sensitizers Containing Isoindigo Unit for Highly Efficient Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 2012, 4 (8), 4215-24; (b) Wu, Y.; Zhu, W. H.; Zakeeruddin, S. M.; Gratzel, M., Insight into D-A-p-A Structured Sensitizers: A Promising Route to Highly Efficient and Stable Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 2015, 7 (18), 9307-18. 16. Jradi, F. M.; Kang, X.; Pajares, D. O. N. G.; Getmanenko, Y. A.; Szymanski, P.; Parker, T. C.; El-Sayed, M. A.; Marder, S. R., Near-Infrared Asymmetrical Squaraine Sensitizers for Highly Efficient Dye Sensitized Solar Cells: The Effect of π‑Bridges and Anchoring Groups on Solar Cell Performance. Chemistry of Materials, ACS 2015. 17. (a) Tsai, H.-H.; Tan, C. J.; Hu, J. C., DSC Research: Ideas, Assignments, Notes and Others 2014; (b) Li, J.-Y.; Chen, C.-Y.; Ho, W.-C.; Chen, S.-H.; Wu, C.-G., Unsymmetrical Squaraines Incorporating Quinoline for Near Infrared Responsive Dye-Sensitized Solar Cells. Org. Lett. 2012, 14, 5420-5423; (c) Maeda, T.; Arikawa, S.; Nakao, H.; Yagi, S.; Nakazumi, H., Linearly p-Extended Squaraine Dyes Enable the Spectral Response of Dye-Sensitized Solar Cells in the NIR Region over 800 nm. New J. Chem. 2013, 37, 701-708. 18. Qin, C.; Numata, Y.; Zhang, S.; Islam, A.; Yang, X.; Sodeyama, K.; Tateyama, Y.; Han, L., A Near-Infrared cis-Configured Squaraine Co-Sensitizer for High-Efficiency Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2013, 23. 19. Paek, S.; Choi, H.; Kim, C.; Cho, N.; So, S.; Song, K.; Nazeeruddin, M. K.; Ko, J., Efficient and Stable Panchromatic Squaraine Dyes for Dye-Sensitized Solar Cells. Chem. Commun. 2011, 47 (10), 2874-2876. 20. Li, J.; Yang, X.; Cheng, M.; Wang, M.; Sun, L., Phenoxazine-Based Panchromatic Organic Sensitizers for Dye-Sensitized Solar Cells. Dyes Pigments 2015 116, 58-64. 21. Wei, T.; Sun, X.; Xin Li; Ågren, H.; Xie, Y., Systematic Investigations on the Roles of the Electron Acceptor and Neighboring Ethynylene Moiety in Porphyrins for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, A-J. 22. (a) Surakhot, Y.; Rattanawan, R.; Ronyhut, K.; Mangsachart, P.; Sudyoadsuk, T.; Promarak, V.; Namuangruk, S.; Kungwand, N.; Jungsuttiwong, S., The Number Density Effect of N-substituted Dyes on the TiO2 Surface In Dye Sensitized Solar Cells: A Theoretical Study. RSC Adv. 2015, 5, 11549–11557; (b) Wu, T.-Y.; Tsao, M.-H.; Chen, F.-L.; Su, S.-G.; Chang, C.-W.; Wang, H.-P.; Lin, Y.-C.; Ou-Yang, W.-C.; Sun, I.-W., Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors. Int. J. Mol. Sci. 2010, 11, 329-353; (c) Sekar, M. S. R.; Palani, E.; Sambandam, A., One-Pot Synthesis of Metal Free Organic Dyes Containing Different Acceptor Moieties for Fabrication of Dye-Sensitized Solar Cells. Tetrahedron Lett. 2013, 54, 3132–3136. 23. An, M.; Sarker, A. K.; Jung, D.-C.; Hong, J.-D., An Organic Nitrile Dye with Strong Donor and Acceptor Groups for Dye-Sensitized Solar Cells Bull. Korean Chem. Soc. 2011, 32, 2083-2086. 24. (a) Yamazaki, E.; Murayama, M.; Nishikawa, N.; Hashimoto, N.; Shoyama, M.; Kurita, O., Utilization of Natural Carotenoids as Photosensitizers for Dye-Sensitized Solar Cells. Solar Energy 2007 81, 512–516; (b) Zhou, H.; Wu, L.; Gao, Y.; Ma, T., Dye-sensitized solar cells using 20 natural dyes as sensitizers. Journal of Photochemistry and Photobiology A: Chemistry 2011, 219, 188–194. 25. Cai, S.; Tian, G.; Li, X.; Su, J.; Tian, H., Efficient and Stable DSSC Sensitizers Based on Substituted Dihydroindolo[2,3-B] Carbazole Donors with High Molar Extinction Coefficients. J. Mater. Chem. A 2013, 1, 11295–11305. 26. Baldoli, C.; Bertuolo, S.; Licandro, E.; Viglianti, L.; Mussini, P.; Marotta, G.; Salvatori, P.; Angelis, F. D.; Manca, P.; Manfredi, N.; Abbotto, A., Benzodithiophene Based Organic Dyes for DSSC: Effect of Alkyl Chain Substitution on Dye Efficiency. Dyes Pigments 2015, 121, 351-362. 27. Jradi, F. M.; Kang, X.; O’Neil, D.; Pajares, G.; Getmanenko, Y. A.; Szymanski, P.; Parker, T. C.; El-Sayed, M. A.; Marder, S. R., Near-Infrared Asymmetrical Squaraine Sensitizers for Highly Efficient Dye Sensitized Solar Cells: The Effect of π-Bridges and Anchoring Groups on Solar Cell Performance. Chem. Mater. 2015, 27 (7), 2480-2487. 28. Shivashimpi, G. M.; Pandey, S. S.; Watanabe, R.; Fujikawa, N.; Ogomi, Y.; Yamaguchi, Y.; Hayase, S., Novel Unsymmetrical Squaraine Dye Bearing Cyanoacrylic Acid Anchoring Group and Its Photosensitization Behavior. Tetrahedron Lett. 2012 53, 5437–5440. 29. (a) Puyada, A. L.; Chaitanya, G. K.; Thomas, A.; Paramasivam, M.; Bhanuprakash, K., DFT Studies of Squarylium and Core-Substituted Squarylium Dye Derivatives: Understanding the Causes of the Additional Shorter Wavelength Absorption in the Latter. J. Phys. Org. Chem. 2012, 26, 37–46; (b) Pastore, M.; Mosconi, E.; Angelis, F. D.; Grätzel, M., A Computational Investigation of Organic Dyes for Dye-Sensitized Solar Cells: Benchmark, Strategies, and Open Issues. J. Phys. Chem. C 2010, 114, 7205–7212. 30. (a) Lu, X.; Wu, C.-M. L.; Wei, S.; Guo, W., DFT/TD-DFT Investigation of Electronic Structures and Spectra Properties of Cu-Based Dye Sensitizers. J. Phys. Chem. A 2010, 114, 1178–1184; (b) Angelis, M. P. a. F. D., Computational Modeling of Stark Effects in Organic Dye-Sensitized TiO2 Heterointerfaces. J. Phys. Chem. Lett. 2011, 2, 1261–1267; (c) Rocca, D.; Gebauer, R.; Angelis, F. D.; Nazeeruddin, M. K.; Baroni, S., Time-Dependent Density Functional Theory Study of Squaraine Dye-Sensitized Solar Cells. Chem. Phys. Lett. 2009, 475, 49–53. 31. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Taroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. , Gaussian, Inc., Wallingford CT 2009. 32. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24 (6), 669-81. 33. Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393 (1-3), 51-57. 34. Steiner, E., Density-Difference Maps in Quantum Chemistry. Theoretica chimica acta 1982, 60 (6), 561-572. 35. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M., cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29 (5), 839-45. 36. Qin, C.; Numata, Y.; Zhang, S.; Yang, X.; Islam, A.; Zhang, K.; Chen, H.; Han, L., Novel Near-Infrared Squaraine Sensitizers for Stable and Efficient Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2014, 24, 3059–3066. 37. Wu, C. G.; Chung, M. F.; Tsai, H.-H. G.; Tan, C. J.; Chen, S. C.; Chang, C. H.; Shih, T. W., Fluorene-Containing Organic Photosensitizers for Dye-Sensitized Solar Cells. ChemPlusChem 2012, 77 (9), 832-843. 38. Srinivas, K.; Prabhakar, C.; Devi, C. L.; Yesudas, K.; Bhanuprakash, K.; Rao, V. J., Enhanced Diradical Nature in Oxyallyl Derivatives Leads to Near Infra Red Absorption: A Comparative Study of the Squaraine and Croconate Dyes Using Computational Techniques. J. Phys. Chem. A 2007, 111 (17), 3378-3386. 39. (a) Beverina, L.; Ruffo, R.; Salamone, M. M.; Ronchi, E.; Binda, M.; Natali, D.; Sampietro, M., Panchromatic Squaraine Compounds for Broad Band Light Harvesting Electronic Devices. J. Mater. Chem. 2012, 22 (14), 6704; (b) Mayerhoffer, U.; Gsanger, M.; Stolte, M.; Fimmel, B.; Wurthner, F., Synthesis and Molecular Properties of Acceptor-Substituted Squaraine Dyes. Chemistry 2013, 19 (1), 218-32. 40. (a) De Angelis, F.; Fantacci, S.; Mosconi, E.; Nazeeruddin, M. K.; Grätzel, M., Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO2 in Dye-Sensitized Solar Cell Models. J. Phys. Chem. C 2011, 115 (17), 8825-8831; (b) Pastore, M.; Fantacci, S.; De Angelis, F., Modeling Excited States and Alignment of Energy Levels in Dye-Sensitized Solar Cells: Successes, Failures, and Challenges. J. Phys. Chem. C 2013, 117 (8), 3685-3700. 41. Chen, B.-S.; Chen, D.-Y.; Chen, C.-L.; Hsu, C.-W.; Hsu, H.-C.; Wu, K.-L.; Liu, S.-H.; Chou, P.-T.; Chi, Y., Donor–Acceptor Dyes with Fluorine Substituted Phenylene Spacer for Dye-Sensitized Solar Cells. J. Mater. Chem. 2011, 21 (6), 1937.
|