(18.232.55.103) 您好!臺灣時間:2021/04/23 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王知行
研究生(外文):WANG, CHIH-HSING
論文名稱:電場誘導有序排列之高導電度複合固態電解質
指導教授:諸柏仁
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:84
中文關鍵詞:高分子固態電解質有機-無機複合材料離子液體電場排列
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  固態高分子電解質具有非揮發性和良好的成膜性,在穿戴式電子產品的市場需求不斷增長的近代,其被認為是可以滿足下一代鋰電池條件的關鍵材料之一。而如何同時具有高離子導電性和適合操作的機械強度是高分子電解質一項技術上的挑戰。
  本研究選取具高介電性與結晶性的高分子材料PVDF-HFP搭配非親水性之離子液BMImTFSI,加入奈米層狀無機添加物──蒙脫土,在電場下製成具高導電度及安全性的高分子複合電解質。粘土(Clay)具有大表面積、高縱橫比的特質,其層間佈滿大量可置換之陽離子。
本研究探討以外加電場方式誘導奈米蒙脫土,使其均勻分散在基材中並形成長程有序的排列。藉由有序排列的結構,將電解質中3D的離子傳導路徑轉換為2D,限制離子傳送路徑達到縮短鋰離子在電解質中穿梭的距離,使鋰離子能更順利、迅速的抵達電極的效果,進而增加高分子電解質的導電性。XRD和DSC的量測結果指出,添加蒙脫土可以增加高分子電解質結晶度,而在電場作用下高分子結晶會由α相轉為具高介電性、具鐵電性和極性之β相,其存在可提高鋰鹽解離度及離子導電度。以此材料製作方法能達到具有高離子傳導性(~10-2 S/cm),搭配LFP應用於鈕扣型鋰電池以0.1C的充放速度可達約135 mAh/g的電容量,並在變速率充放電中能有良好的回覆力。

Solid polymer electrolytes is considered as the most critical components for next generation lithium battery to meet the growing demands in mobile electronic power industry. Preserving ionic conductivity and strong film forming property simultaneously is a technical challenge in developing polymer electrolyte for lithium battery. We report in this study a novel polymer electrolyte system by incorporating surface functionalized clay with the PVDF-HFP/IL/Li salt system under applied electric field. The application of electric field has effectively oriented clay layers with increased order parameter which were homogeneously dispersed in the base polymer to form an ordered and aligned nanostructure as confirmed by SEM. This super ionic feature is extremely favorable for delivering high ion conductivity in the solvent free electrolytes where long range ordered inorganic moiety served to establish rapid ion transport. X-ray diffraction and DSC measurements indicated that the α- PVdF crystalline form was decreased by the electric field, replaced with more polar β-crystalline form, which is essential for higher degree of salt dissociation and also contributes to higher ion conductivity. AC impedance spectroscopy revealed that the ionic conductivity of the electrolyte membrane containing MMT attains an order of 10−2 S cm−1 at room temperature and increase with temperature described by Arrhenius relationship. Coin cells assembled with the LFP cathode reversible discharge capacities of 135 mAh g−1 at 0.1C, accompanied with nearly 100% coulombic efficiency.
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第1章 緒論 1
1-1 前言 1
1-2 研究背景 1
1-3 研究動機 4
1-4 研究架構 5
第2章 文獻回顧 7
2-1 鋰離子電池簡介與基本工作原理 7
2-2 高分子電解質 10
2-2-1 高分子電解質的發展與瓶頸 11
2-2-2 高分子電解質的傳導機制 12
2-2-3 常見的高分子電解質 14
2-2-4 PVDF系列高分子 15
2-3 離子液體之種類及特性 20
2-4 奈米無機添加物 23
2-4-1 奈米無機添加物簡介 23
2-4-2 奈米無機添加物之作用機制 25
2-5 有序排列 26
第3章 實驗方法 29
3-1 藥品與儀器設備 29
3-1-1 藥品 29
3-1-2 儀器設備 30
3-2 實驗步驟 31
3-2-1 複合電解質薄膜之製備 31
3-2-2 鈕扣型電池之製備 32
第4章 結果與討論 33
4-1 不同離子液體添加量對複合電解質之影響 33
4-2 高分子電解質之結晶與相態(morphology) 37
4-2-1 電解質薄膜之相態(morphology) 37
4-2-2 電解質薄膜之Tc與Tm 42
4-2-3 高分子結晶晶相與結晶度 46
4-3 複合電解質薄膜之拉力測試 50
4-4 複合電解質薄膜之離子導電度 52
4-5 電池電性測試 55
4-5-1 電容量與庫倫效率 55
4-5-2 介面電阻 59
4-5-3 極化現象 62
第5章 結論與展望 66
參考文獻 69


1. M. S. Whittingham, Science. 1976, 192 (4244), 1126–1127.
2. M. J. Wakihara, Mater. Sci. Eng. 2001, R 33, 1092134.
3. Z. Zheng, W. Shen, Z. Tang, 化學世界., 2004, 270.
4. B. Scrosati, J. Garche, Journal of Power Sources, 2010, 195, 2419–2430
5. J. B. Goodenough, Y. Kim, Chem. Mater., 2010, 22, 587–603
6.C. Luo , J. Wang , X. Fan , Y. Zhu , F. Han , L. Suo , C. Wang, Nano Energy, 2015, 13, 537–545
7. M. Koo, K. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang, K. J. Lee, Nano Lett. 2012, 12, 4810−4816
8. B. Schalkwijk, E. Scrosati, Advances in Lithium-ion Batteries, Kluwer Academic/Plenum, Boston, 2004
9. K. Xu ,Chem. Rev. 2004, 104, 4303-4417
10.P. G. Bruces, M. T. Hardgrave, and C. A. Vincent, Solid state Ionics , 1992, 53-56, 1087.
11. I. I. Olsen, R. Koksbang, E. Skou, Electrochim. Acta., 1995, 40, 1701.
12. M. Doyle, T. F. Fuller, and J. Newman, Electrochim. Acta., 1994, 39, 2073.
13. D. E. Fenton, J. M. Parke & P. V. Wright, Polymer, 1973, 14, 589.
14.G. Feuillade, Ph. Perche, Journal of Applied Electrochemistry, 1975, Volume 5, Issue 1, pp 63-69
15. M. B. Armand, J. M. Chabagno, and M. Duclot, Second International Meeting solid Electrolytes, Extended Abstract, St. Andrews, Scotland, 1978, September 20-22.
16.Y. T. Chen, Y. H. Chen, CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)December. 2004 Vol. 62, No.4, pp.445~454
17. A. Franco, Rechargeable Lithium Batteries: From Fundamentals to Applications, 2015, University of Picardie Jules Verne, France
18. M. Armand, Annu. Rev. Mate, Sci. 1986, 245, 4.
19. D. F. Shriver, M. A. Ratner, Chem. Rev. 1988, 88, 109.
20. J. M. Tarascon, M. Armand, Nature, 2001 414, 359-367
21. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Progress in Polymer Science, 2014, 39, 683–706
22. M. Watanabe, M. Kanba, H. Matsuda, K. Mizoguchi, I. Shinohara, E. Tsuchida, K. Tsunemi, Makromo. Chem.-Rapid. Commun., 1981, 2, 741.
23. E. Tsuchida, H. Ohno, K. Tsunemi, Electrochim. Acta, 1983, 28, 591.
24. K. Tsuchida, H. Ohno, E. Tsuchida, Electrochim. Acta, 1983, 28, 833.
25. A, S. Gozdz, C. N. Schmutz, J. M. Tarascon, U.S. Patent No.5, 1994, 296, 318.
26. A. S.Gozdz, C. N. Schmutz, J. M. Tarascon, P.C. Warren, U. S. patent No.5, 1995, 418, 91.
27. A. S. Gozdz, J. M. Tarascon, and P. C. Warren, U.S. Patent No.5, 1995, 460, 904.
28. J. M. Tarascon, A. S. Gozdz, C. N. Schmutz, F. Shokoohl, P. C. Warren, Solid State Ionics, 1996, 86-88, 49.
29. Z. Jiang, B, Carroll, and K. M. Abraham, Electrochim. Acta, 1997,
42, 2667.
30. C. S. Kim, S. M. Oh, Electrochim. Acta , 2001, 46, 1323.
31. Michel Armand, Frank Endres, Douglas R. MacFarlane, Hiroyuki Ohno, Bruno Scrosati, Nature Materials ,2009, 8, 621 – 629
32. S. Chintapalli, R. Frech, Macromolecules, 1996, 29, 3499.
33. Y. Saito, A. M. Stephan, H. Kataoka, Solid State Ionics, 2003, 160, 149.
34. A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, M. Watanabe, Macromolecules, 1999, 32, 1541.
35. F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, Nature, 1998, 394, 456.
36. H. Shao, 工業材料, 2014, 333, 09, 171-178
37. Y. Ye, J. Rick, B. Hwang, J. Mater. Chem. A, 2013, 1, 2719
38. P. Palmero, Nanomaterials, 2015, 5, 656-696
39. S. Srivastava, J. L. Schaefer, Z. Yang, Z Tu, L. A. Archer, Adv. Mater. 2014, 26, 201–234
40. T. Kato, Adv. Mater., 2002, 14, No. 5, March 4
41. J. H. Choi, Y. Ye, Y. A. Elabd, K. I. Winey, Macromolecules 2013, 46, 5290−5300
42. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu and X. Zhang, Energy Environ. Sci., 2014, 7, 3857
43. R. C. Castberg, Z. Rozynek, J. O. Fossum, K . J. Måløy, P. Dommersnes, E. G. Flekkøy, Rev. Cub. Fis. , 2012, 29, 1E17
44. Z. Rozynek, H. Mauroy, R. C. Castberg, K. D. Knudsen, J. O. Fossum, Rev. Cub. Fis. 2012, 29, 1E37
45. Z. Rozynek, R. C. Castberg, A. Mikkelsen, J. O. Fossum, J. Mater. Res., 2013, Vol. 28, No. 10
46. L. Yang, G. Bai, Y. Liu, J. Gu, J. Li, H. Zhang, IEEE Transactions on Dielectrics and Electrical Insulation , 2015, Vol. 22, No. 3
47.段振斌,「1-Butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide與二氧化鈦奈米管改質之非揮發鋰電池電解液之研究」,國立中央大學,碩士論文,民國103年。
48. A. J. Lovinger, Science, 1983, Volume 220, Number 4602
49. M. Stern, A. L. Geary, Journal of the Electrochemical Society, 1957, 104 (1) 56–63.
50. Z. Rozynek, T. Zacher, M. Janek, M. Čaplovičová, J. O. Fossum, Applied Clay Science , 2013, 77–78, 1–9
51. E. Paineau, I. Dozov, A. M. Philippe, I. Bihannic, F. Meneau, C. Baravian, L. J. Michot, P. Davidson, J. Phys. Chem. B 2012, 116, 13516−13524

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔