(3.238.249.17) 您好!臺灣時間:2021/04/12 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝欣成
研究生(外文):Hsin-Cheng Hsieh
論文名稱:光化學評估監測站資料分析與應用
論文名稱(外文):Photochemical Assessment Monitoring Stations (PAMS) Data Analysis and Applications
指導教授:王家麟王家麟引用關係
指導教授(外文):Jia-Lin Wang
學位類別:博士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:136
中文關鍵詞:光化學評估監測站揮發性有機化合物資料分析異戊二烯趨勢分析
外文關鍵詞:Photochemical Assessment Monitoring Stations (PAMS)Volatile Organic Compounds (VOC)Data analysisIsopreneTrends analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣光化學評估監測站自2002開始建立,到了2006年其運作方式才逐漸成熟,至今共有9個固定測站分佈在台灣西半部。光化學評估監測站網提供了以下的功能:1. 瞭解該區域臭氧前趨物的變化;2. 提供源與受體分析的資料庫;3. 驗證空氣品質模式的排放物種成份比例;4. 解釋高臭氧事件的原因及影響。為了達到上述四項功能,光化學評估監測站的資料必須經過嚴格的品保及品管作為以確保數據的品質。測站經過十年的運作及數據的累積,已經成為高價值的研究資料,可供使用者進行空污或健康之相關研究。本論文將針對下述兩項議題進行更深入的探討:
由於異戊二烯是台灣地區最主要的生物源,而且和氫氧自由基具有相當高的反應性,因此,第三章以異戊二烯作為研究的主題。透過光化學評估監測站萬華站連續兩年的資料分析,發現異戊二烯的濃度變化是由生物源及交通源所共同貢獻的,為了將異戊二烯交通源貢獻分離出來,本論文使用乙烯作為交通排放的指標。研究中發現,嚴熱季節的中午之異戊二烯濃度逐漸攀升,特別是八月份,其最高平均濃度更高達1.6 ppbv,此時交通源的貢獻都被生物源的貢獻所掩蓋,但還是能在濃度峰的斜面上看到交通源的貢獻;而在寒冷季節的中午,則平均濃度降至0.2 ppbv,而且日夜變化和乙烯相似,主要為交通源的貢獻。本研究使用光化學評估監測站的異戊二烯資料,不但驗證了過去利用採樣罐分析的結果,而且其高時間解析的數據,更清楚地顯示由嚴熱季節至寒冷季節,生物源貢獻逐漸減少的變化過程。
本論文第四章利用光化學評估監測站十年來的資料進行趨勢分析,並且與空氣品質測站下降的趨勢結果互相驗證。由於資料數量龐大,不能單純使用多項式擬合的方式來求趨勢,因此採用美國海洋與大氣總署地球系統實驗室全球監測部的曲線擬合法,此方法被用來計算長生命期的二氧化碳濃度趨勢,本論文應用此方法來分析多個測站及多個物種的十年趨勢。首先在台灣北部地區、中部地區、南部地區挑選乙烯、丙烯、苯、甲苯、異戊二烯進行趨勢分析,其中前四個化合物是交通與工業的來源,而異戊二烯主要來自生物源。北部地區的萬華站,其上述的五種化合物均有下降的趨勢,特別是異戊二烯,其降幅更高達95.7%,研判與附近植被變化有密切關係。中部地區台西站,經過趨勢分析之後,發現丙烯和甲苯的降幅達到60%以上,而乙烯和苯有30%的降幅。南部地區的小港站,小港站,其上述的五種化合物均逐有下降的趨勢,其中又以乙烯的降幅達69%最為明顯。研判所觀察到的長期下降趨勢應與交通或工業相關之排放法規逐漸加嚴有密切關係。
The establishment of the network of Photochemical Assessment Monitoring Stations (PAMS) in Taiwan began in 2002, and majority of the stations were set up in 2006. Up to date, there are nine fixed sites across the west side of the island. The functionalities of the PAMS network are as follows: 1. to understand the abundance and variations of major ozone precursors in the regions; 2. to provide the database for source-and-receptor analysis; 3. to validate emission profiles for air-quality models; 4. to facilitate elucidating the cause-and-effect of high ozone episodes. In order to serve these four purposes, the PAMS measurements were subject to a strict protocol of quality control and assurance to safeguard data quality. Afteradecade-long operation, the PAMS data have become an asset for users to explore its true values. Of many possible aspects that could be explored in depth, two were pursued to form the main themes of this thesis.
Isoprene was selected to be the subject of investigation from the PAMS database owing to its mostly biogenic nature, significant emissions on the island, and its extremely high reactivity to hydroxyl radicals. Inter-annual variations of atmospheric isoprene in Taipei were reported based on two years of PAMS data to reveal the detailed interplay between the biogenic and vehicular sources throughout the year. To separate the vehicular contribution from the biogenic one for the ambient isoprene, ethylene was used as an indicator of traffic emissions. While dramatic surge of isoprene was observed at noontime in hot months with the highest average peak mixing ratio of 1.6 ppbv in August, its abundance decreased to 0.2 ppbv on average in cold months. The vehicular contribution to ambient isoprene was largely masked over by the noontime surge of isoprene in hot seasons, but was still able to be vaguely observed on the slopes of the isoprene peaks mimicking the rush-hour features of ethylene. In winter, the diurnal variations of isoprene were very similar to those of ethylene, suggesting the traffic dominance in cold months. This work of isoprene with the use of the PAMS dataset greatly enhances the key findings in previous flask studies. Compared to flask sampling, the highly time-resolved PAMS data was intended to reveal the evolution process from a biogenically overwhelmed condition in hot months to the condition where the biogenic source weakened to reveal the traffic source in cold months.
The decade-long PAMS dataset from 2006 to 2015 allowed trend analysis to respond to the decline observed by the air quality stations. Due to the large size of the dataset, a curve-fitting algorithm adopted by National Oceanic and Atmospheric Administration (NOAA) used for long-lived trace gases such as carbon dioxide was applied to our trend analysis of multi-sites and multi-compounds. With the curve-fitting algorithm the dataset for each target compound was de-seasonized to reveal the decadal trend and residuals. Three sites in the north, central and south regions of Taiwan were selected for trend analysis of ethylene, propylene, benzene, toluene and isoprene. The first four compounds have common sources of vehicles and industries, whereas isoprene is largely biogenic. The Wanhua site in Taipei showed decreased trends for all the aforementioned compounds, with isoprene showing the most dramatic decline of 95.7% over the decade. A significant change in vegetation coverage should be the cause for such a pronounced decline in isoprene. In the central region, the Taixi site showed more than 60% declines for propylene and toluene, and more than 30% for ethylene and benzene. In the south region, the Siaogang site, which is in an urban-industrial hybrid environment, showed an overall decline for all these five compounds with the highest decline of 69% for ethylene. It is speculated that the declines were related to the ever tightening regulations on vehicular and industrial emissions in the past.

謝誌 i
著作目錄 v
中文摘要 vii
央文摘要 ix
目錄 xiii
圖目錄 xvii
表目錄 xxi
第一章 緒論 1
1.1 緣起 1
1.2 研究目的 2
1.3 論文架構 3
第二章 光化學評估監測站 5
2.1 大氣化學原理 5
2.2 測站描述 11
2.2.1 測玷儀器介紹 12
2.2.2 測站設置準則 16
2.2.3 測站部署 16
2.3 測站資料 19
2.4 光化學評估監測站的重要性 23
2.4.1 連續資料統計分析 24
2.4.2 提供直接的光化證據 26
2.4.3 排放屬性分析 27
2.4.4 模擬結果驗證 31
2.4.5 模式排放物種成份比例之調整 40
2.5 結論 41
第三章 生物源及交通源異戊二烯特徵研究 43
3.1 前言 43
3.2 研究方法 48
3.2.1 異戊二烯 48
3.2.2 台灣地區植被分布 49
3.2.3 測站環境 50
3.2.4 交通源指標 52
3.3 結果與討論 53
3.3.1 乙烯與異戊二烯資料統計 53
3.3.2 乙烯與異戊二烯散佈圖分析 55
3.3.3 生物源及交通源異戊二烯之特性探討 57
3.3.4 臭氧生成潛勢 59
3.3.5 温度敏感度 64
3.4 結論 66
第四章 長期的趨勢分析 67
4.1 前言 67
4.2 研究方法 72
4.2.1 分析物種 72
4.2.2 趨勢計算方法 73
4.3 結果與討論 81
4.3.1 萬華站趨勢 82
4.3.2 小港站趨勢 86
4.3.3 台西站趨勢 89
4.4 結論 90
第五章 總結與未來展望 95

1. Atkinson, R. Chem. Rev. 1986, 86, 69–201.
2. Atkinson, R.; Arey, J. Chem. Rev. 2003, 103, 4605–4638.
3. Carter, W. P. L.; Pierce, J. A.; Luo, D.; Malkina, I. L. Atmos. Environ. 1995, 29, 2499–2511.
4. Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edition; Jhon Wiley & Sons, Inc., 2006.
5. Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L. G.; Sueper, D. T.; Frost, G. J.; Donnelly, S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hubler, G.; Meagher, J. F.; Fehsenfeld, F. C. Science 2001, 292, 719–723.
6. Carter, W. P. L.; Lurmann, F. W. Atmos. Environ. 1991, 25, 2771–2806.
7. Carter, W. P. L.; Atkinson, R. Environ. Sci. Technol. 1989, 23, 864–880.
8. Yang, K.; Ting, C.; Wang, J.; Wingenter, O.; Chan, C. Atmos. Environ.2005, 39, 3221–3230.
9. Chang, C. C.; Ou-Yang, C. F.; Wang, C. H.; Chiang, S. W.; Wang, J. L. Atmos. Environ. 2010, 44, 1301–1307.
10. Wang, C. H.; Chang, C. C.; Wang, J. L. J. Chromatogr. A 2005, 1087, 150–157.
11. Chen, S. P.; Liao, W. C.; Chang, C. C.; Su, Y. C.; Tong, Y. H.; Chang, J. S.; Wang, J. L. Atmos. Environ. 2014, 90, 33–42.
12. Chen, S. P.; Su, Y. C.; Chiu, C. J.; Lin, C. H.; Chang, J. S.; Chang, C. C.; Wang, J. L. Atmos. Environ. 2015, 122, 94–102.
13. Roberts, J. M.; Fehsenfeld, F. C.; Liu, S. C.; Bollinger, M. J.; Hahn, C.; Albritton, D. L.; Sievers, R. E. Atmos. Environ. 1984, 18, 2421–2432.
14. Kleinman, L. I.; Daum, P. H.; Lee, Y. N.; Nunnermacker, L. J.; Springston, S. R.; Weinstein Lloyd, J.; Hyde, P.; Doskey, P.; Rudolph, J.; Fast, J.; Berkowitz, C. J. Geophys. Res. 2003, 108, D3, 4096, doi: 10.1029/2002JD002621.
15. Glaser, K.; Vogt, U.; Baumbach, G.; Volz-Thomas, A.; Geiss, H. J. Geophys. Res. 2003, 108, D4, 8253, doi:10.1029/2002JD002475.
16. Rappenglück, B.; Fabian, P. Atmos. Environ. 1999, 33, 3843–3857.
17. Monod, A.; Sive, B. C.; Avino, P.; Chen, T.; Blake, D. R.; Rowland, F. S. Atmos. Environ. 2001, 35, 135–149.
18. Zaveri, R. A.; Peters, L. K. J. Geophys. Res. 1999, 104, 30387–30415.
19. Carter, W. P. L. Development of the SAPRC-07 chemical mechanism and updated ozone reactivity scales, Report to the California Air Resources Board Contracts No. 03-318; Center for Environmental Re- search and Technology, 2007.
20. Stockwell, W. R.; Middleton, P.; Chang, J. S.; Tang, X. J. Geophys. Res. 1990, 95, 16343–16367.
21. Stockwell, W. R.; Kirchner, F.; Kuhn, M.; Seefeld, S. J. Geophys. Res. 1997, 102, 25847–25879.
22. Chen, S. P.; Liu, T. H.; Chen, T. F.; Ou-Yang, C. F.; Wang, J. L.; Chang, J. S. Environ. Sci. Technol. 2010, 44, 4635–4644.
23. 劉遵賢; 黃賀春; 張艮輝; 張時禹; 鄭福田; 台灣空氣品質模式 Taiwan Air Quality Model(TAQM) 操作使用手冊; 2012.
24. Liu, W. T.; Hsieh, H. C.; Chen, S. P.; Chang, J. S.; Lin, N. H.; Chang, C. C.; Wang, J. L. Atmos. Environ. 2012, 55, 56–63.
25. Dietz, W. A. J. Gas Chromatogr. 1967, 5, 68–71.
26. Chen, S. P.; Liu, W. T.; Ou-Yang, C. F.; Chang, J. S.; Wang, J. L. Atmos. Environ. 2014, 84, 1–8.
27. Chameides, W. L.; Lindsay, R. W.; Richardson, J.; Kiang, C. S. Science 1988, 241, 1473–1475.
28. Atkinson, R. Atmos. Environ. 2000, 34, 2063–2101.
29. Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P. I.; Geron, C. Atmos. Chem. Phys. 2006, 6, 3181–3210.
30. Arneth, A.; Schurgers, G.; Hickler, T.; Miller, P. A. Plant Biol. 2008, 10, 150–162.
31. McLaren, R.; Singleton, D. L.; Lai, J.; Khouw, B.; Singer, E.; WU, Z.; NIKI, H. Atmos. Environ. 1996, 30, 2219–2232.
32. Borbon, A.; Fontaine, H.; Veillerot, M.; Locoge, N.; Galloo, J. C.; Guillermo, R. Atmos. Environ. 2001, 35, 3749–3760.
33. Pacifico, F.; Harrison, S. P.; Jones, C. D.; Sitch, S. Atmos. Environ. 2009, 43, 6121–6135.
34. von Schneidemesser, E.; Monks, P. S.; Gros, V.; Gauduin, J.; Sanchez, O. Geophys. Res. Lett. 2011, 38, L19804, doi:10.1029/2011GL048647.
35. Hellén, H.; Tykkä, T.; Hakola, H. Atmos. Environ. 2012, 59, 59–66.
36. Rasmussen, R. A.; Khalil, M. A. K. J. Geophys. Res. 1988, 93, 1417– 1421.
37. Wang, J. L.; Chew, C.; Chang, C. Y.; Liao, W. C.; Lung, W. N., S. C. C.and Chen; Lee, P. J.; Lin, P. H.; Chang, C. C. Atmos. Environ. 2013, 79, 369–379.
38. Chang, C. C.; Wang, J. L.; Lung, S.; Chang, C. Y. Atmos. Environ. 2014, 99, 298–308.
39. Guenther, A. B.; Zimmerman, P. R.; Harley, P. C.; Monson, R. K.; Fall, R. J. Geophys. Res. 1993, 98, 12609–12617.
40. Shao, M.; Czapiewski, K. V.; Heiden, A. C.; Kobel, K.; Komenda, M.; Koppman, R.; Wildt, J. J. Geophys. Res. 2001, 106, 20483–20491.
41. Sharkey, T. D.; Yeh, S. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 407–436.
42. Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F. Environ. Pollut. 2013, 183, 71–80.
43. Chen, X. L.; Zhao, H. M.; Li, P. X.; Yin, Z. Y. Remote Sens. Environ. 2006, 104, 133–146.
44. Wang, J. L.; Chang, C. C.; Lee, K. Z. J. Chromatogr. A 2012, 1248, 161–168.
45. Reimann, S.; Calanca, P.; Hofer, P. Atmos. Environ. 2000, 34, 109–115.
46. Lee, B. S.; Wang, J. L. Atmos. Environ. 2006, 40, 5486–5495.
47. 1999 Protocol to Abate Acidification, Eutrophication and Ground-level Ozone to the Convention on Long-range Transboundary Air Pollution, as amended on 4 May 2012.
48. Burtraw, D.; Szambelan, S. J. U.S. Emissions Trading Markets for SO2 and NOx; Resources For the Future, 2009.
49. Chiang, C. K.; Fan, J. F.; Li, J.; Chang, J. S. J. Geophys. Res. 2009, 114, D24304, doi:10.1029/2008JD011322.
50. Chang, S. C.; Lee, C. T. Environ. Monit. Assess. 2007, 127, 87–96.
51. Parrish, D. D. Atmos. Environ. 2006, 40, 2288–2300.
52. Wang, S.; Hao, J. J. Environ. Sci. (China) 2012, 24, 2–13.
53. Zhang, Q.; Yuan, B.; Shao, M.; Wang, X.; Lu, S.; Lu, K.; Wang, M.; Chen, L.; Chang, C. C.; Liu, S. C. Atmos. Chem. Phys. 2014, 14, 6089– 6101.
54. von Schneidemesser, E.; Monks, P. S.; Plass-Duelmer, C. Atmos. Env- iron. 2010, 44, 5053–5064.
55. Hallquist, M.; et al. Atmos. Chem. Phys. 2009, 9, 5155–5236.
56. Waked, A.; Sauvage, S.; Borbon, A.; Gauduin, J.; Pallares, C.; Vagnot, M. P.; Léonardis, T.; Locoge, N. Atmos. Environ. 2016, 141, 263–275.
57. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing (1st ed.); Cam- bridge University Press, 1988.
58. Koopmans, L. H.; Birnbaum, Z. W.; Lukacs, E. The Spectral Analysis of Time Series; Academic Press, 1974.

電子全文 電子全文(網際網路公開日期:20210701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔