跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 13:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊傑
研究生(外文):Juen-Jie Huang
論文名稱:使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器
論文名稱(外文):A Broadband 4-Bit CMOS Phase Shifter Using Magnetically Coupled All-Pass Networks
指導教授:傅家相
指導教授(外文):Jia-Shiang Fu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:56
中文關鍵詞:相位偏移器
外文關鍵詞:Phase Shifter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文介紹使用具磁耦合之全通網路架構來實現的數位式相位偏移器。我們分析並利用全通網路中電感間的磁耦合,來提升相位偏移器之頻寬。為驗證設計概念,我們使用TSMC 0.18-µm CMOS製程實現一寬頻四位元相位偏移器。
我們分析全通網路中電感間磁耦合對電路特性的影響。我們利用奇偶模分析推導出具磁耦合的全通網路其S參數,進而得到讓此架構達到全通的頻率響應所需滿足的條件。我們將具磁耦合的全通網路應用於相位偏移器設計,分別分析外接路徑切換開關之對偶網路以及內接切換式電容之單一網路這兩種相移器架構,並求出設計參數與相位偏移量之間的關係。
基於理論分析所得到的結果,我們使用TSMC 0.18-µm CMOS製程設計並實作出一全差動式四位元相位偏移器。電路中的180°相移級使用一對單刀雙擲開關實現,其餘相移級則使用具磁耦合之全通網路來實現,電路架構皆為內接切換式電容之單一網路。其中90°相位級使用串接兩級不同中心頻率的磁耦合全通網路,而45°相移級則使用單級的磁耦合通網路。最後,22.5°相移級則將切換式電容取代為可變電容,用以提供連續的相位偏移;當製程變異過大,可供微調,以得到較準確的相移量。
四位元相移器的量測結果顯示,從1.28 GHz到4.22 GHz,均方根相位誤差均小於3°,相對應的頻寬為106.9%。在頻寬範圍內,返回損耗均大於7.7 dB。植入損耗均小於12.2 dB,振幅誤差皆在±1.5 dB之內。

In this thesis, a digital phase shifter designed based on magnetically coupled all-pass networks (MCAPNs) is presented. The effect of the magnetic coupling between the two inductors within an all-pass network is exploited for increasing the bandwidth of phase shifters. As a proof of concept, a broadband 4-bit phase shifter is implemented in TSMC 0.18-µm CMOS process.
The effect of the magnetic coupling between the two inductors within an all-pass network is analyzed. By even–odd mode analysis, the S parameters of the MCAPN are derived. The conditions for the network to provide an all-pass frequency response are subsequently obtained. Furthermore, the MCAPN is applied to phase shifter design. Two phase-shifter topologies, namely dual networks with external path-select switches and single network with internal switched capacitors, are analyzed. The relations between the design parameters and the phase shift are derived.
Based on the results obtained from the theoretical analysis, a fully-differential 4-bit phase shifter is designed and implemented in TSMC 0.18-µm CMOS process. In the phase shifter, the 180° phase-shifting stage is realized using a pair of single-pole double-throw switches whereas the other phase-shifting stages are constructed using single MCAPN with internal switched capacitors. The 90° phase-shifting stage is constructed by cascading two MCAPNs with different center frequencies whereas the 45° phase-shifting stage consists of only a single MCAPN. Finally, in the 22.5° phase-shifting stage, varactors are used instead of switched capacitors so as to provide a continuous phase shift, which can be fine-tuned in case process variations are too severe.
The measurement results of the 4-bit phase shifter show that the root-mean-square phase error is lower than 3° from 1.28 GHz to 4.22 GHz, corresponding to a 106.9% bandwidth. Within the frequency range, the input and output return losses are greater than 7.7 dB, the insertion loss is less than 12.2 dB, and the amplitude error is within ±1.5 dB for all 16 states.

國 立 中 央 大 學 I
摘要 VI
Abstract VII
目錄 X
圖目錄 XI
表目錄 XII
第一章 緒論 1
1–1 研究動機 1
1–2 文獻回顧 2
1–3 論文架構 4
第二章 理論分析 5
2–1 簡介 5
2–2 全通網路 6
2–3 具磁耦合之全通網路架構分析 9
2-4 相位偏移器之設計分析 13
2–4–1 外接路徑切換開關之對偶網路 14
2–4–2 內接切換式電容之單一網路 17
第三章 使用CMOS製程實現之數位式全通 相位偏移器 20
3–1 簡介 20
3–2 電路設計 21
3–2–1 互相耦合之電感 22
3–2–2 45°與90°數位式相位偏移級 25
3–2–3 180°數位式相位偏移級 30
3–2–4 22.5°類比式相位偏移級 32
3–3 電路模擬及量測結果 35
第四章 結論 41
參考文獻 43

[1] I. J. Bahl and D. Conway, “L-and S-Band compact octave bandwidth 4-bit MMIC phase shifters,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, Feb. 2008.
[2] M. Meghdadi, M. Azizi, M. Kiani, A. Medi, and M. Atarodi, “A 6-bit CMOS phase shifter for S-band,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3519–3526, Dec. 2010.
[3] D.-W. Kang, H. D. Lee, C.-H. Kim, and S. Hong, “Ku-band MMIC phase shifter using a parallel resonator with 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 294–301, Jan. 2006.
[4] Qun Xiao, “A compact L-band broadband 4-bit MMIC phase shifter with low phase error,” in Proceedings of 2011 European Microwave Integrated Circuits Conference, pp. 410–413, Oct. 2011.
[5] A. Asoodeh and M. Atarodi, “A full 360° vector-sum phase shifter with very low RMS phase error over a wide bandwidth,” IEEE Trans. on Microw. Theory Tech., vol. 60, no. 6, pp. 1626–1634, Jun. 2012.
[6] K.-J. Koh and G. M. Rebeiz, “A 6–18 GHz 5-bit active phase shifter,” IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 792–795.
[7] Y. Zheng and C. E. Saavedra, “Full 360° vector-sum phase-shifter for microwave system applications,” IEEE Trans. on Circuits and Systems–I: Regular Papers, vol. 57, no. 4, pp. 752–758, Apr. 2010.
[8] H.-Y. Li and J.-S. Fu, “Analysis of magnetically coupled all-pass network for phase-shifter design,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 9, pp. 2025–2037, Sep. 2014.
[9] X. Tang and K. Mouthaan, “Design of large bandwidth phase shifters using common mode all-pass networks,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 55–57, Feb. 2012.
[10] D. Adler and R. Popovich, “Broadband switched-bit phase shifter using all-pass networks,” in IEEE MTT-S Int. Microw. Symp. Dig., Jul. 1991, pp. 265–268.
[11] W.-C. Chen, “Design and fabrication of phase shifters based on all-pass network,” Master dissertation, National Central University, 2011.
[12] M. Meghdadi, M. Azizi, M. Kiani, A. Medi, and M. Atarodi, “A 6-bit CMOS phase shifter for S-band,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3519–3526, Dec. 2010.
[13] X. Tang and K. Mouthaan, “Design of large bandwidth phase shifters using common mode all-pass networks,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 55–57, Feb. 2012.
[14] S. Darlington, “Realization of a constant phase difference,” Bell Syst. Tech. J., vol. 29, pp. 94–104, Jan. 1950.
[15] S. D. Bedrosian, “Normalized design of 90° phase-difference networks,” IRE Trans. Circuit Theory, vol. 7, no. 2, pp. 128–136, Jun. 1960.
[16] L.-Y. V. Chen, R. Forse, A. H. Cardona, T. C. Watson, and R. York, “Compact analog phase shifters using thin-film (Ba,Sr)TiO3 varactors,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 667–670.
[17] O. El-Gharniti, E. Kerhervé, and J.-B. Bégueret, “Modeling and characterization of on-chip transformers for silicon RFIC,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 607–615, Apr. 2007.
[18] J. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits,vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
[19] W. Fan, A. Lu, L. L. Wai, and B. K. Lok, “Mixed-mode S-parameter characterization of differential structures,” in Proc. IEEE 5th Electron. Packag. Technol. Conf., Dec. 2003, pp. 533–537.
[20] Q. Xiao, “A compact L-band broadband 6-bit mmic phase shifter with low phase error,” in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2011, pp. 410–413.
[21] H.-Y. Li and J.-S. Fu, “Broadband complementary metal-oxide semiconductor phase shifter with 6-bit resolution base on all-pass networks,” IET Microw. Antennas Propag., vol. 9, no. 11, pp. 1144–1151, Mar. 2015.
[22] S. Sah, X. Yu, and D. Heo, “Design and analysis of a wideband 1535-GHz quadrature phase shifter with inductive loading,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, pp. 3024–3033, Aug., 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top