|
[1] I. J. Bahl and D. Conway, “L-and S-Band compact octave bandwidth 4-bit MMIC phase shifters,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, Feb. 2008. [2] M. Meghdadi, M. Azizi, M. Kiani, A. Medi, and M. Atarodi, “A 6-bit CMOS phase shifter for S-band,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3519–3526, Dec. 2010. [3] D.-W. Kang, H. D. Lee, C.-H. Kim, and S. Hong, “Ku-band MMIC phase shifter using a parallel resonator with 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 294–301, Jan. 2006. [4] Qun Xiao, “A compact L-band broadband 4-bit MMIC phase shifter with low phase error,” in Proceedings of 2011 European Microwave Integrated Circuits Conference, pp. 410–413, Oct. 2011. [5] A. Asoodeh and M. Atarodi, “A full 360° vector-sum phase shifter with very low RMS phase error over a wide bandwidth,” IEEE Trans. on Microw. Theory Tech., vol. 60, no. 6, pp. 1626–1634, Jun. 2012. [6] K.-J. Koh and G. M. Rebeiz, “A 6–18 GHz 5-bit active phase shifter,” IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 792–795. [7] Y. Zheng and C. E. Saavedra, “Full 360° vector-sum phase-shifter for microwave system applications,” IEEE Trans. on Circuits and Systems–I: Regular Papers, vol. 57, no. 4, pp. 752–758, Apr. 2010. [8] H.-Y. Li and J.-S. Fu, “Analysis of magnetically coupled all-pass network for phase-shifter design,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 9, pp. 2025–2037, Sep. 2014. [9] X. Tang and K. Mouthaan, “Design of large bandwidth phase shifters using common mode all-pass networks,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 55–57, Feb. 2012. [10] D. Adler and R. Popovich, “Broadband switched-bit phase shifter using all-pass networks,” in IEEE MTT-S Int. Microw. Symp. Dig., Jul. 1991, pp. 265–268. [11] W.-C. Chen, “Design and fabrication of phase shifters based on all-pass network,” Master dissertation, National Central University, 2011. [12] M. Meghdadi, M. Azizi, M. Kiani, A. Medi, and M. Atarodi, “A 6-bit CMOS phase shifter for S-band,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3519–3526, Dec. 2010. [13] X. Tang and K. Mouthaan, “Design of large bandwidth phase shifters using common mode all-pass networks,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 55–57, Feb. 2012. [14] S. Darlington, “Realization of a constant phase difference,” Bell Syst. Tech. J., vol. 29, pp. 94–104, Jan. 1950. [15] S. D. Bedrosian, “Normalized design of 90° phase-difference networks,” IRE Trans. Circuit Theory, vol. 7, no. 2, pp. 128–136, Jun. 1960. [16] L.-Y. V. Chen, R. Forse, A. H. Cardona, T. C. Watson, and R. York, “Compact analog phase shifters using thin-film (Ba,Sr)TiO3 varactors,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 667–670. [17] O. El-Gharniti, E. Kerhervé, and J.-B. Bégueret, “Modeling and characterization of on-chip transformers for silicon RFIC,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 607–615, Apr. 2007. [18] J. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits,vol. 35, no. 9, pp. 1368–1382, Sep. 2000. [19] W. Fan, A. Lu, L. L. Wai, and B. K. Lok, “Mixed-mode S-parameter characterization of differential structures,” in Proc. IEEE 5th Electron. Packag. Technol. Conf., Dec. 2003, pp. 533–537. [20] Q. Xiao, “A compact L-band broadband 6-bit mmic phase shifter with low phase error,” in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2011, pp. 410–413. [21] H.-Y. Li and J.-S. Fu, “Broadband complementary metal-oxide semiconductor phase shifter with 6-bit resolution base on all-pass networks,” IET Microw. Antennas Propag., vol. 9, no. 11, pp. 1144–1151, Mar. 2015. [22] S. Sah, X. Yu, and D. Heo, “Design and analysis of a wideband 1535-GHz quadrature phase shifter with inductive loading,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, pp. 3024–3033, Aug., 2013.
|