(3.236.82.241) 您好!臺灣時間:2021/04/13 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃咨翰
研究生(外文):Tzu-Hang Huang
論文名稱:雷達接收機多頻帶疊合之時域重建方法
論文名稱(外文):Signal reconstruction method using multi-band overlapping of wide-band receiver
指導教授:徐國鎧
指導教授(外文):Kuo-Kai Shyu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:超寬頻雷達頻率取樣類比數位轉換器傅立葉轉換
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超寬頻雷達相較一般傳統連續波雷達其發射波型為極短的高斯脈衝波,相對頻寬占了20%以上,其優點是因其超寬頻和高分辨力的特性,可獲得目標物的細微動量的時域表現,因此窄頻雷達的技術很難使用在超寬頻雷達。在接收機部分因其波形為極窄波形(ns量級)的瞬時信號,要完整保留回波的精細響應,取樣的問題是一大挑戰,若要取得不失真的波形,在類比數位轉換器上的限制就需要高達數十GHz的取樣率,成本和製造的困難,導致很難實現。本研究用於頻率取樣重建方法,利用傅立葉轉換式,使用混頻器及振盪器等射頻元件滿足積分式,將工作頻帶劃分多個通道,而ADC取樣率的限制速率降低到子頻寬的頻寬範圍,取樣為頻率係數,後端數位處理結合多組低速ADC輸出的值進行綜合得到輸出波型。最後本研究使用商用規格微波元件實作寬頻雷達的接收機雛形,並將原需要的ADC取樣速率降至十倍以上。
The utra-wideband radar transmitting gaussian pulse is different from traditional radar. The bandwidth with respect to the center frequency of the utra-wideband radar is above 20 percent. The utra-wideband radar has advantage in ultra-wideband and high resolution which can get the fine momentum of measuring target in time-domain. However, significant implementation challenges arise as well due to the large bandwidths. The analog-to-digital converters in the receiver must arrive GHz sample rates in order to completely capture the UWB signal whose pulse’s width is nanoseconds, so the cost of radar is very high and it is hard to realize. This paper uses the frequency domain approach to address the problem. This method is using mixer, oscillator and integrator to implement the Fourier transform. In the proposed architecture, multiple channels separating the spectrum of input signal are parallel to one another. Then, the ADC samples the bandwidth of sub channels. Combining these frequency components and inverse Fourier transform can obtain the completely time-domain waveform. Finally this paper not only uses commercial RF components to implement the prototype of broadband radar receiver but also reduces the restriction in ADC sample rate about ten times.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1研究動機 1
1-2文獻探討 2
1-3論文架構 3
第二章 超寬頻雷達 5
2-1 超寬頻定義 5
2-2 UWB系統模組 8
2-2-1 發射訊號(Transmitted Signal) 8
2-2-2 目標模型(Target Model) 9
2-2-3通道模型(Channel Model) 10
2-2-4 接收訊號(Received Signal) 11
第三章 微波電路設計基礎 12
3-1集總電路和分布常數元件 12
3-2 橫向電磁波傳輸線理論 14
3-3 微帶傳輸線 17
3-3-1微帶線 17
3-3-2微帶線設計 17
3-4 混頻器 20
3-4-1雙平衡混頻器 20
3-4-2混頻器的特性參數 22
第四章 頻域取樣於多頻帶疊合時域重建方法 26
4-1頻率取樣動機 26
4-2信號分析在頻域部分 26
4-3頻率取樣 28
4-4積分形式頻率取樣 29
4-5反傅立葉訊號重建 31
第五章 雷達系統硬體設計架構 36
5-1系統架構 36
5-2收發模組電路設計 38
第六章 實驗與討論 48
6-1寬頻雷達發射機 48
6-2寬頻雷達接收機matlab模擬 53
6-3寬頻雷達頻域取樣接收機 60
第七章 結論與未來展望 64
7.1結論 64
7.2展望與未來 64
參考文獻 66


[1] 向敬成、張明友等編著,「雷達系統」,五南圖書,台北,2004。
[2] Raúl Chávez-Santiago and Ilangko Balasingham, “Ultrawideband Signals in
Medicine” IEEE Signal processing magazine, November 2014.
[3] Wei Hu, Zhangyan Zhao, Yunfeng Wang, Haiying Zhang, and Fujiang Lin,
“Noncontact Accurate Measurement of Cardiopulmonary Activity Using a
Compact Quadrature Doppler Radar Sensor”, IEEE Transactions on
biomedical engineering, Vol. 61,No.3, March 2014, pp.725-735.
[4] Sun J. and M. Li, “Life detection and location methods using UWB impulse
radar in a coal mine”, Mining Science and Technology, Vol. 21, 689-691,
2011.
[5] Kumar, Z. Li, Q. Liang, B. Zhang, and X. Wu, “Experimental study of
through-wall human detection using ultra wideband radar sensors”,
Measurement, vol. 47, pp. 869-879, Jan. 2014.
[6] Pieter J. A. Harpe, Ben Büsze, Kathleen Philips, and Harmke de Groot, “A
0.47–1.6 mW 5-bit 0.5–1 GS/s Time-Interleaved SAR ADC for Low-Power
UWB Radios”, IEEE Journal Of Solid-State Circuits, Vol. 47,No. 7, July
2012.
[7] Sebastian Hoyosand, and Brian M. Sadler, “Frequency-Domain
Implementation of the Transmitted-Reference Ultra-Wideband Receiver”,
IEEE Transactions On Microwave Theory And Techniques, Vol. 54, No. 4
April 2006.
[8] Shaoshu Sha, Jinghong Chen, and Mingyu Lu, “Efficient Measurement of
Impulses Based on Frequency-Domain Approach”, IEEE Transactions On
Instrumentation And Measurement, Vol.61, No.6, June 2012.
[9] H. J. Lee, D. S. Ha, and H. S. Lee, “A frequency-domain approach for
all-digital CMOS ultra wideband receivers,” IEEE Conference on Ultra
Wideband Systems and Technologies, pp. 86-90, November 2003.
[10] Yazhou Wang, Quanhua Liu, Quanhua Liu, “CW and Pulse–Doppler Radar
Processing Based on FPGA for Human Sensing Applications” IEEE
Transactions On Geoscience And Remote Sensing, Vol. 51, No.5, May 2013
[11] R. Ch´avez-Santiago, I. Balasingham, and J. Bergsland, “Ultrawide band Technology in Medicine: A Survey”, Journal of Electrical and Computer Engineering Volume 2012.
[12] Mehran Baboli, Olga Boric-Lubecke, ictor Lubecke, “A New Algorithm for Detection of Heart and Respiration Rate with UWB Signals”, 34th Annual International Conference of the IEEE EMBS, September, 2012
[13] Jing Li, Lanbo Liu, Zhaofa Zeng, and Fengshan Liu, “Advanced Signal Processing for Vital Sign Extraction With Applications in UWB Radar Detection of Trapped Victims in Complex Environments”, IEEE Journal Of Sellected Topics In Applied Earth Observations And Remote Sensing, Vol. 7, No. 3, March 2014.
[14] 李文龍,「5.8GHz都卜勒雷達系統設計與整合」,國立交通大學電
機學院電信學程,碩士論文,民國一○○年三月。
[15] Kleinhempel, W.;Bergmann, D. ; Stammler, W. ; “Speed measure of vehicles with on-board Doppler radar,” Radar 92. International Conference, vol., no., pp.284-287, 12-13 Oct 1992.
[16] Xubo Wang, Anh Dinh, and Daniel Teng, “3–10 GHz ultra wideband front-end transceiver in 0.13μm complementary metal oxide semiconductor for low-power biomedical radar”, In IET Circuits, Devices & Systems, March 2013.
[17] S. Venkatesh, C. Anderson, N. Rivera, and R. Buehrer, “Implementation and analysis of respiration-rate estimation using impulse-based UWB,” In IEEE Military Communications Conference, Oct. 2005.
[18] Berk Gülmezoǧlu, “Indoor Multi-Person Tracking Vi Ultra-Wideband
Radars”, Bilkent University, Master, 2014.
[19] Z. Sahinoglu, S. Gezici, and I. Guvenc, “Ultra-Wideband Positioning
Systems: Theoretical Limits, Ranging Algorithms, and Protocols”, Cambridge, U. K, 2008.
[20] Revision of part 15 of the commission’s rules regarding ultra-
wide band transmission systems”, Federal Communications Commission, Washington, D.C., Tech. Rep. ET Docket 98-153, April 2002.
[21] M. Z. Win and R. A. Scholtz, “Impulse radio: how it works”,
Communications Lett, IEEE, vol.2, pp. 36-8, February 1998.
[22] X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system”, in IEEE International Symposium on Circuits and Systems, 2002.
[23] 白家豪,「基於超寬頻雷達之非接觸式心跳率及呼吸率監護系統」,國立中央大學電機工程學系,碩士論文,民國一○四年。
[24] 何中庸編譯,「高頻電路設計基礎」,全華科技圖書,台北,2001。
[25] 張盛富、戴明鳳編著,「無線通信之射頻被動電路設計」,全華科
技圖書,台北,2003。
[26] 袁杰編著,「無線電高頻電路」,全華科技圖書,台北,2001。
[27] 袁杰編著,「實用無線電設計」,全華科技圖書,台北,2004。
[28] Voltage Controlled Oscillator Cvco55be-0800-1600 Datasheet ,
Crystek Microwave Inc, 2014.
[29] HMC423MS8 GaAs MMIC Mixer Integrated LO Amplifier, 0.6 -1.3 GHz Datasheet, Analog Devices Inc.
[30] HMC617LP3 GaAs SMT Phemt Low Noise Amplifier, 0.55 - 1.2 GHz
Datasheet, Analog Devices Inc.
[31] David M.Pozar編著,郭仁財譯,「微波工程」,高立圖書,台北
縣,2006。
[32] ADL5380 400 MHz to 6 GHz Quadrature Demodulator Datasheet,
Analog Devices Inc.






電子全文 電子全文(網際網路公開日期:20210726)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔