(3.230.76.48) 您好!臺灣時間:2021/04/11 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳季賢
研究生(外文):Ji-Xian Chen
論文名稱:磊晶成長氮化鋁銦/氮化鋁/氮化鎵異質結構於六吋矽基板與其特性分析
論文名稱(外文):Growth and Characterization of AlInN/AlN/GaN Heterostructures on 6-inch Si Substrates
指導教授:綦振瀛
指導教授(外文):Jen-Inn Chyi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:95
中文關鍵詞:氮化鎵氮化鋁銦高電子遷移率電晶體有機金屬化學蒸氣沉積
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主題為以有機金屬化學蒸氣沉積法成長高電子遷移率與低通道電阻之氮化鋁銦/氮化鋁/氮化鎵異質結構於矽基板上,並探討主導氮化鋁銦異質結構電子遷移率之散射機制。為了降低合金散射在氮化鋁銦異質結構中對電子遷移率造成的影響,本研究在氮化鋁銦/氮化鎵之間插入一層氮化鋁二元化合物作為間隔層,阻擋二維電子氣跨入氮化鋁銦位障層。本研究亦探討磊晶條件對氮化鋁銦異質結構電性的影響,在優化磊晶條件之後,試片的表面平坦度可以降低至0.738 nm,在二維電子氣濃度為2.13×1013 cm-2的情況下,載子遷移率可以提升到1360 cm2/V-s,因此成功地達成一個通道片電阻低至215 ohm/sq的氮化鋁銦高電子遷移率電晶體結構。
  此外,本研究亦製備了一系列具有不同氮化鎵披覆層厚度與位障層鋁含量的試片,其披覆層厚度與鋁含量分布分別為0 nm 到13 nm與82%到89%。實驗結果顯示,氮化鋁銦異質結構之二維電子氣濃度隨著披覆厚度減少或鋁含量增加而增加,其電子遷移率則隨著電子濃度增加而減少,而界面粗糙的結構,其電子遷移率衰退的幅度較界面平整者顯著。藉由低溫霍爾量測分析推論,具高電子濃度的試片在低溫區其電子遷移率是由界面粗糙散射機制所主導。因此,界面平整度為獲得高二維電子氣濃度氮化鋁銦高電子遷移率電晶體之關鍵要素。

This study aims at growing high electron mobility and low channel resistance AlInN/GaN heterostructures on Si substrates by metal-organic chemical vapor deposition, and the investigation of carrier scattering mechanisms in these heterostructures.
In order to reduce alloy scattering in AlInN/GaN high electron mobility transistors (HEMTs), a binary spacer layer, i.e. AlN, is inserted between AlInN and GaN so as to prevent electrons in GaN channel from spilling to AlInN barrier layer. By optimizing the growth conditions of AlInN HEMTs, surface roughness of 0.738 nm, electron mobility of 1,360 cm2/V-s with two dimensional electron gas (2DEG) concentration of 2.13×1013 cm-2, leading to a very low sheet resistance of 215 ohm/sq, have been achieved.
A series of AlInN HEMTs with GaN cap layer thickness and Al content in AlInN barrier layer ranging from 0 to 13 nm and 82% to 89%, respectively, have also been prepared and characterized. Hall-effect measurements show that 2DEG concentration increases with decreasing GaN cap thickness and increasing Al content in AlInN barrier layer, while electron mobility decreases with increasing 2DEG density. It is also observed that the degradation of electron mobility is more significant for the samples with a rough interface than those with a smooth one. From temperature-dependent Hall-effect measurements, it is concluded that the electron mobility of AlInN HEMTs with high 2DEG density is dominated by interface roughness scattering at low temperature. Reducing interface roughness is an essential task to achieve high 2DEG concentration AlInN HEMTs.

論文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 導論 1
1.1 前言 1
1.2 研究動機 3
1.2.1 氮化鎵功率元件發展現況 3
1.2.2 氮化鋁銦/氮化鎵異質結構面臨之瓶頸 7
1.3 論文架構 9
第二章 氮化鋁銦/氮化鎵異質結構背景與磊晶結構設計 10
2.1 前言 10
2.2 氮化鋁銦/氮化鎵異質結構介紹 11
2.2.1 氮化鋁銦/氮化鎵異質結構起源 11
2.2.2 氮化鋁銦/氮化鎵異質結構極化效應 13
2.3 氮化鋁銦/氮化鎵磊晶結構設計 17
2.3.1 氮化物成長於矽基板之簡介 17
2.3.2 氮化鋁銦/氮化鎵磊晶結構與條件 21
2.4 本章總結 25
第三章 氮化鋁間隔層對氮化鋁銦/氮化鎵異質結構特性之探討 26
3.1 前言 26
3.2 有無氮化鋁間隔層之氮化鋁銦/氮化鎵異質結構特性分析 28
3.3 界面粗糙度對氮化鋁銦/氮化鎵異質結構特性影響之分析 38
3.4 氮化鋁銦/氮化鎵異質結構低溫霍爾特性分析 44
3.5 本章總結 47
第四章 磊晶結構與條件對氮化鋁銦/氮化鋁/氮化鎵異質結構特性探討 49
4.1 前言 49
4.2 披覆層厚度與位障層成分對該異質結構特性影響之探討 51
4.3 氮化鋁間隔層品質對該異質結構特性影響之探討 56
4.4 氮化鋁銦/氮化鋁/氮化鎵異質結構界面散射機制模型建立 60
4.5 界面粗糙度參數對電子遷移率之影響 67
4.6 本章總結 74
第五章 結論與未來展望 76
參考文獻 78


[1] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, et al., "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, Nov 2006.
[2] M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, "High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures," Applied Physics Letters, vol. 89, p. 062106, Aug 2006.
[3] M. Hiroki, N. Maeda, and T. Kobayashi, "Fabrication of an InAlN/AlGaN/AlN/GaN Heterostructure with a Flat Surface and High Electron Mobility," Applied Physics Express, vol. 1, p. 111102, Nov 2008.
[4] S. W. Kaun, E. Ahmadi, B. Mazumder, F. Wu, E. C. H. Kyle, P. G. Burke, et al., "GaN-based high-electron-mobility transistor structures with homogeneous lattice-matched InAlN barriers grown by plasma-assisted molecular beam epitaxy," Semiconductor Science and Technology, vol. 29, p. 045011, Apr 2014.
[5] F. Wu, K. H. Gao, Z. Q. Li, T. Lin, and W. Z. Zhou, "Effects of GaN interlayer on the transport properties of lattice-matched AlInN/AlN/GaN heterostructures," Journal of Applied Physics, vol. 117, p. 155701, Apr 2015.
[6] J. Xue, J. Zhang, Y. Hou, H. Zhou, J. Zhang, and Y. Hao, "Pulsed metal organic chemical vapor deposition of nearly latticed-matched InAlN/GaN/InAlN/GaN double-channel high electron mobility transistors," Applied Physics Letters, vol. 100, p. 013507, Jan 2012.
[7] Y. L. Fang, S. B. Dun, B. Liu, J. Y. Yin, B. C. Sheng, T. T. Han, et al., "High performance InAlN/GaN heterostructure and field effect transistor on sapphire substrate by MOCVD," 5th Global Symposium on Millimeter Waves, 2012.
[8] S. Zhang, M. C. Li, Z. H. Feng, B. Liu, J. Y. Yin, and L. C. Zhao, "High electron mobility and low sheet resistance in lattice-matched AlInN/AlN/GaN/AlN/GaN double-channel heterostructure," Applied Physics Letters, vol. 95, p. 212101, Nov 2009.
[9] Y. L. Fang, Z. H. Feng, J. Y. Yin, Z. R. Zhang, Y. J. Lv, S. B. Dun, et al., "Ultrathin InAlN/GaN heterostructures with high electron mobility," Physica Status Solidi B, vol. 252, pp. 1006-1010, May 2015.
[10] F. Lecourt, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, M. Eickelkamp, et al., "InAlN/GaN HEMTs on Sapphire Substrate With 2.9-W/mm Output Power Density at 18 GHz," IEEE Electron Device Letters, vol. 32, pp. 1537-1539, Nov 2011.
[11] D. S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, "300-GHz InAlN/GaN HEMTs With InGaN Back Barrier," IEEE Electron Device Letters, vol. 32, pp. 1525-1527, Nov 2011.
[12] O. Jardel, G. Callet, J. Dufraisse, M. Piazza, N. Sarazin, E. Chartier, et al., "Electrical performances of AlInN/GaN HEMTs. A comparison with AlGaN/GaN HEMTs with similar technological process," International Journal of Microwave and Wireless Technologies, vol. 3, pp. 301-309, Jun 2011.
[13] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, Jan 2000.
[14] H. Morkoc, R. Cingolani, and B. Gil, "Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors," Solid-State Electronics, vol. 43, pp. 1909-1927, Oct 1999.
[15] A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, et al., "Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon," Physica Status Solidi C, vol. 0, pp. 1583-1606, 2003.
[16] A. Krost, A. Dadgar, J. Blasing, A. Diez, T. Hempel, S. Petzold, et al., "Evolution of stress in GaN heteroepitaxy on AlN/Si(111): From hydrostatic compressive to biaxial tensile," Applied Physics Letters, vol. 85, pp. 3441-3443, Oct 2004.
[17] Z. Liliental-Weber and D. Cherns, "Microstructure of laterally overgrown GaN layers," Journal of Applied Physics, vol. 89, pp. 7833-7840, Jun 2001.
[18] J. Hertkorn, F. Lipski, R. Brueckner, T. Wunderer, S. B. Thapa, F. Scholz, et al., "Process optimization for the effective reduction of threading dislocations in MOVPE grown GaN using in situ deposited SiNx masks," Journal of Crystal Growth, vol. 310, pp. 4867-4870, Nov 2008.
[19] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, et al., "Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)," Journal of Crystal Growth, vol. 221, pp. 316-326, Dec 2000.
[20] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, et al., "Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers," Journal of Electronic Materials, vol. 35, pp. 592-598, Apr 2006.
[21] T. Kehagias, G. P. Dimitrakopulos, J. Kioseoglou, H. Kirmse, C. Giesen, M. Heuken, et al., "Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy," Applied Physics Letters, vol. 95, p. 071905, Aug 2009.
[22] S. B. Lisesivdin, S. Acar, M. Kasap, S. Ozcelik, S. Gokden, and E. Ozbay, "Scattering analysis of 2DEG carrier extracted by QMSA in undoped Al0.25Ga0.75N/GaN heterostructures," Semiconductor Science and Technology, vol. 22, pp. 543-548, May 2007.
[23] G.-Y. Lee, P.-T. Tu, and J.-I. Chyi, "Improving the off-state characteristics and dynamic on-resistance of AlInN/AlN/GaN HEMTs with a GaN cap layer," Applied Physics Express, vol. 8, p. 064102, Jun 2015.
[24] Y. Liu, S. P. Singh, Y. J. Ngoo, L. M. Kyaw, M. K. Bera, Q. Q. Lo, et al., "Low thermal budget Hf/Al/Ta ohmic contacts for InAlN/GaN-on-Si HEMTs with enhanced breakdown voltage," Journal of Vacuum Science & Technology B, vol. 32, p. 032201, May 2014.
[25] S. Tripathy, L. M. Kyaw, S. B. Dolmanan, Y. J. Ngoo, Y. Liu, M. K. Bera, et al., "InxAl1-xN/AlN/GaN High Electron Mobility Transistor Structures on 200 mm Diameter Si(111) Substrates with Au-Free Device Processing," ECS Journal of Solid State Science and Technology, vol. 3, pp. Q84-Q88, Mar 2014.
[26] Kai Cheng, S. Degroote, M. Leys, F. Medjdoub, J. Derluyn, B. Sijmus, et al., "Very low sheet resistance AlInN/GaN HEMT grown on 100 mm Si(111) by MOVPE," Physica Status Solidi C, vol. 7, pp. 1967-1969, May 2010.
[27] H. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J.-F. Carlin, et al., "102-GHz AlInN/GaN HEMTs on Silicon With 2.5-W/mm Output Power at 10 GHz," IEEE Electron Device Letters, vol. 30, pp. 796-798, Aug 2009.
[28] S. Arulkumaran, K. Ranjan, G. I. Ng, C. M. M. Kumar, S. Vicknesh, S. B. Dolmanan, et al., "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate," IEEE Electron Device Letters, vol. 35, pp. 992-994, Oct 2014.
[29] A. Watanabe, J. J. Freedsman, R. Oda, T. Ito, and T. Egawa, "Characterization of InAlN/GaN high-electron-mobility transistors grown on Si substrate using graded layer and strain-layer superlattice," Applied Physics Express, vol. 7, p. 041002, Apr 2014.
[30] A. Dadgar, F. Schulze, J. Blasing, A. Diez, A. Krost, M. Neuburger, et al., "High-sheet-charge-carrier-density AlInN/GaN field-effect transistors on Si(111)," Applied Physics Letters, vol. 85, pp. 5400-5402, Nov 2004.
[31] H. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J.-F. Carlin, et al., "Ultrahigh-Speed AlInN/GaN High Electron Mobility Transistors Grown on (111) High-Resistivity Silicon with F-T=143 GHz," Applied Physics Express, vol. 3, p. 094101, Sep 2010.
[32] A. Watanabe, J. J. Freedsman, Y. Urayama, D. Christy, and T. Egawa, "Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition," Journal of Applied Physics, vol. 118, p. 235705, Dec 2015.
[33] Colin Wood and D. Jena, Polarization Effects in Semiconductors. New York: Springer, 2008.
[34] D. Zanato, S. Gokden, N. Balkan, B. K. Ridley, and W. J. Schaff, "The effect of interface-roughness and dislocation scattering on low temperature mobility of 2D electron gas in GaN/AlGaN," Semiconductor Science and Technology, vol. 19, pp. 427-432, Mar 2004.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔