|
[1] Mark Adams and John W Demmel. A parallel maximal independent set algorithm. University of California, Berkeley,Computer Science Division,1998. [2] Ted D Blacker,William J Bohnhoff, and Tony L Edwards.Cubit mesh generation environment. volume 1 : Users manual. Technical report, Sandia National Labs., Albuquerque,NM(United States),1994. [3] Shang-Rong Cai.Parallelnewton-krylov-schwarz algorithms for finite elementsolution of three dimensional poisson-boltzmann equations with applications in colloidal science. 中央大學數學系學位論文, pages 1–28,2008. [4] XIAO-CHUANCAI.Parallel fully coupled schwarz preconditioners for saddle point problems. Electronic Transactions on Numerical Analysis, 22:146–162,2006. [5] Yun-Long Shao Jong-Shinn Wu Feng-Nan Hwang, Shang-Rong Cai.Parallel newton-krylov-schwarz algorithms for the three-dimensional poisson-boltzmann equation in numerical simulation of colloidal particle interactions.2010. [6] Michael W Gee, Christopher M Siefert, Jonathan J Hu, Ray S Tuminaro, and Marzio G Sala. Ml 5.0 smoothed aggregation user’sguide. Technical report,Technical Report SAND2006-2649, Sandia National Laboratories,2006. [7] Amy Henderson,Jim Ahrens,Charles Law,et al. The ParaView Guide. Kitware Clifton Park,NY,2004. [8] Mark T Jones and Paul E Plassmann. A parallel graph coloring heuristic. SIAM Journal on Scientific Computing, 14(3):654–669,1993. [9] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.
[10] George Karypis, Kirk Schloegel, and Vipin Kumar. Parmetis. Parallel graph partitioning and sparse matrix ordering library. Version, 2, 2003.
[11] Jan Mandel. Hybrid domain decomposition. In Domain Decomposition Methods in Science and Engineering: The Sixth International Conference on Domain Decomposition, June 15-19, 1992, Como, Italy, volume 157, page 103. American Mathematical Soc., 1994.
[12] YVAN NOTAY. An aggregation-based algebraic multigrid method. Electronic
Transactions on Numerical Analysis, 2010.
[13] W.D. Gropp D. Kaushik M.G. Knepley-L.C. McInnes B.F. Smith S. Balay,
K. Buschelman and H. Zhang. Petsc web page. http://www.mcs.anl.gov/petsc/, 2009.
[14] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–869, 1986.
[15] Will J Schroeder, Bill Lorensen, and Ken Martin. The visualization toolkit. Kitware,2004.
[16] Ray S Tuminaro. Parallel smoothed aggregation multigrid: Aggregation strategies on massively parallel machines. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing, page 5. IEEE Computer Society, 2000.
|