跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/09 01:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊宗豪
研究生(外文):Zong-Hao Yang
論文名稱:以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
論文名稱(外文):Investigating the effect of crystal structure on the crack propagation using the discrete element method
指導教授:鍾雲吉
指導教授(外文):Yun-Chi Chung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:116
中文關鍵詞:傾斜開槽平板晶體結構離散元素法力學行為裂縫生成與傳播裂縫路徑
外文關鍵詞:inclined notched platecrystal structureDEMmechanical behaviorcrack initiation and propagationcrack path
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用離散元素法(Discrete Element Method, DEM)模擬具有傾斜開槽之正方薄平板在單軸拉力作用下的力學性質及破壞過程。本研究主旨在於藉由改變平板的晶體結構和開槽的傾斜角度來觀察此兩種因素對於平板中的力學行為、裂縫的生成與傳播及裂縫路徑的影響,而研究的內容可分成三個部分:(1)比較離散元素法與有限元素法在平板中的應力分布情形;(2)分析平板在裂縫即將生成前的四種力學行為:應力集中因子、破壞力、邊界位移及應變能;(3)探討平板在裂縫生成後的裂縫發展及路徑。在第一部分的研究結果顯示,在離散元素法中,平板在裂縫生成前的應力分布狀態與有限元素法的結果非常一致,而在第二部分中的研究結果顯示:(1)在全部四種晶體結構中,應力集中因子先隨著角度的增加而上升,到達最大值(此時對應的開槽傾角皆為30度),接著隨著角度增加而逐漸下降,最後到達最小值(此時對應的開槽傾角皆為90度);(2)在同一種晶體結構中,破壞力與應力集中因子呈現負相關,即當應力集中因子越大時其對應的破壞力越小;(3)裂縫生成前的邊界位移在所有的晶體結構中,皆在開槽傾角為90度時呈現最大值,而最小值則會因晶體結構而異,若在相同開槽傾斜角度條件下,晶體結構的位移量由大到小依序為:體心立方、簡單立方、面心立方、六方緊密堆積;(4)裂縫生成前的應變能在所有的晶體結構中,同樣都在開槽傾角為90度時呈現最大值,且最小值亦會因晶體結構而異,最後在第三部分中的研究結果顯示,在不同晶體結構及開槽傾角條件下,裂縫皆會沿著垂直拉力的方向發展直到試體完全斷裂並在裂縫附近殘留部分壓力區,且因為在面心立方及六方緊密堆積晶體結構中,顆粒及接觸鍵接的排列皆具有不對稱性,此情形會使得結構中的力量產生偏集中的現象,並造成該集中處的裂縫較其它力量集中處快發生,而在裂縫的破壞型態上,簡單立方、體心立方和六方緊密堆積晶體結構的正向鍵接破壞數分別占了各自整體鍵接破壞數的100%、83%和78%,而面心立方晶體結構則是46%,由此顯示,此四種晶體結構在承受單軸拉力作用時,主要是由拉力模式所控制,雖然在面心立方晶體結構中,剪向鍵接破壞數略多於正向鍵接破壞數。
This thesis studies mechanical behavior and failure process of a thin notched plate subjected to uniaxial tension using the discrete element method (DEM). The purpose of this study is to investigate the effects of crystal structure and notch inclination angle on the mechanical responses, crack initiation and propagation process, and crack paths. The proposed DEM model has been verified by the corresponding FEM calculation. The main findings are highlighted as follows: (1) The force-displacement curves for each crystal structure all exhibit wavy profiles and the loading stiffnesses of the curves follow the sequence of hexagonal close-packed (HCP) > face-centered cubic (FCC) > simple cubic (SC) > body-centered cubic (BCC); (2) The stress concentration factor first increases with notch inclination angle, reaches the maximum value (at the notch inclination angle of 30 degrees) and then decreases to the minimum value (at the notch inclination angle of 90 degrees); (3) In general, for the same crystal structure, the larger the stress concentration factor is, the smaller the fracture force is; (4) For the same notch inclination angle, the magnitude order of the boundary displacement is as follows: BCC>SC>FCC>HCP; (5) For all the four crystal structures, the maximum stored strain energy occurs at the notch inclination angle of 90 degrees but the minimum is at the different angle for each crystal structure; (6) The crack generally developed and propagated along the horizontal direction, and the region behind the crack tip shows the compressive contact forces; (7) The SC and BCC crystal structures show a symmetric feature of crack propagation, whereas the FCC and HCP crystal structures exhibit asymmetric characteristics; (8) In such a loading scenario, a plate with an inclined notch subjected to uniaxial tension, the crack initiation and propagation in all the four crystal structures are mainly dominated by the tension mode.
摘要 i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF TABLES v
LIST OF FIGURES vi
1. INTRODUCTION 1
1.1 Literature Review 1
1.2 Research Motivation and Scope 4
2. NUMERICAL SIMULATION METHOD 5
2.1 General Concepts of PFC3D 5
2.1.1 Calculation cycle 5
2.1.2 Force-displacement law 5
2.1.3 Law of motion 8
2.1.4 Estimation of timestep 10
2.2 Linear Contact Constitutive Model 11
2.2.1 Stiffness model 11
2.2.2 Slip model (Coulomb friction law) 12
2.2.3 Damping model 13
2.2.4 Numerical model 14
2.3 Contact-Bond Model and Its Mechanism of Fracture 14
2.4 Particle Stress Tensor 16
2.5 Strain Energy 17
2.6 Introduction to Four Types of Crystal Structures 17
2.6.1 Simple cubic crystal structure 17
2.6.2 Body-centered cubic crystal structure 18
2.6.3 Face-centered cubic crystal structure 19
2.6.4 Hexagonal close-packed crystal structure 20
2.7 Introduction to Simulated Specimens 21
2.7.1 Simulated specimens and input parameters 21
2.7.2 Generating method of particles and a notch 22
2.8 Linear Elastic Stress Field in Cracked Bodies 23
2.8.1 Fracture modes 23
2.8.2 Stress states 24
2.8.3 Stress concentration factor 25
3. RESULTS AND DISCUSSION 26
3.1 Comparison of Stress Distribution between DEM and FEM 26
3.2 Effects of Crystal Structure and Notch Inclination Angle on Mechanical Responses Immediately before Crack Initiation 29
3.3 Effects of Crystal Structure and Notch Inclination Angle on Crack Initiation and Propagation, and Crack Paths 32
4. CONCLUSIONS 38
REFERENCES 40
1. P.A. Cundall, O.D.L. Strack, “A discrete numerical model for granular assemblies“, Géotechnique, Vol 29, pp. 47-65, March 1979.
2. D.O. Potyondy and P.A. Cundall, “A bonded-particle model for rock”, International Journal of Rock Mechanics &; Mining Sciences, Vol 41, pp. 1329–1364, 2004.
3. Itasca Consulting Group Inc, PFC3D 3.0 (Particle Flow Code in 3 dimensions, Version 3.0), Second Edition, Itasca Consulting Group Inc., Minneapolis, 2003.
4. 劉文智,「以數值模擬層狀岩石巴西試驗」,國立中央大學,碩士論文,民國102年。
5. Y. Tan, D. Yang, and Y. Sheng, “Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC”, Journal of the European Ceramic Society, Vol 29, pp. 1029–1037, 2009.
6. N. Cho, C.D. Martin and D.C. Sego, “A clumped particle model for rock”, International Journal of Rock Mechanics &; Mining Sciences, Vol 44, pp. 997–1010, 2007.
7. 張家銓,「分離元素法於擬脆性岩材微觀破裂機制之初探」,國立台北科技大學,碩士論文,民國96年。
8. D. Yang, Y. Sheng, J. Ye and Y. Tan, “Dynamic simulation of crack initiation and propagation in cross-ply laminates by DEM”, Composites Science and Technolog, Vol 71, pp. 1410–1418, 28 July 2011.
9. R. Zhang and J. Li, “Simulation on mechanical behavior of cohesive soil by Distinct Element Method”, Journal of Terramechanics, Vol 43, pp. 303–316, 2006.
10. E.E. Gdoutos, Fracture Mechanics, Second Edition, Springer, Berlin Heidelberg, 2005.
11. D. Gross and T. Seelig, Fracture Mechanics, Second Edition, Springer, Berlin Heidelberg, 2011.
12. T. Belytschko, H. Chen, J. Xu and G. Zi, “Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment”, International Journal for Numerical Methods in Engineering, Vol 58, pp. 1873–1905, November 2003.
13. A. Amarasiri and J. Kodikara, “Use of Material Interfaces in DEM to Simulate Soil Fracture Propagation in Mode I Cracking”, International Journal of Geomechanics, Vol 11, pp. 314–322, August 2011.
14. L.A. Mejía Camones, E. do Amaral Vargas Jr, R.P de Figueiredo and R.Q Velloso, “Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism”, Engineering Geology, Vol 153, pp. 80–94, 8 February 2013.
15. L.F. Vesga, L.E. Vallejo and S. Lobo-Guerrero, “DEM analysis of the crack propagation in brittle clays under uniaxial compression tests”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol 32, pp. 1405–1415, 15 August 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top