跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃以鈞
研究生(外文):Yi-Chun Huang
論文名稱:奈米銀沉澱-蝕刻二段式製作陣列矽奈米線之研究
論文名稱(外文):The study of fabricating silicon nanowire arrays with nano-sliver particle and two-step method
指導教授:李天錫李天錫引用關係
指導教授(外文):Tien-Hsi Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:矽奈米柱金屬輔助蝕刻奈米銀
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽奈米線陣列之尺度能降低入射光因介質折射率不同所生成之反射,故其擁有良好的抗反射能力。因此在太陽能相關的設備上可以看到矽奈米線的應用,而另一方面奈米線陣列間大量的空隙,可讓奈米線陣列吸附氣體分子,因此也適合應用於氣體感測元件。不過,奈米線陣列有製作時分佈均勻性不足、設備昂貴等缺點。因此本研究的重點是降低奈米線陣列的生產成本與其良率之提升。本研究運用濕式化學蝕刻法運用NaBH4還原奈米銀並控制其形貌並沉積於矽基板上,最後再放入HF/H2O2中進行蝕刻。實驗中利用改變沉積方式、沉積與蝕刻分步進行,明顯改善金屬輔助蝕刻不均的問題,此想法明顯降低銀金屬因為團聚或是反應時液體擾動所造成的局部金屬輔助蝕刻,提升了矽奈米線整體蝕刻的均勻度。實驗結果證明此法所製之奈米柱陣列擁有比傳統濕式蝕刻更良好的均勻性。
The anti-reflection ability of silicon nanowire (SiNW) arrays are remarkable because the distance between SiNWs is similar to the wavelength of visible light, which can lower the incident light reflection caused by different visible medium. Nowadays, SiNW arrays are applied in solar Industry. There is lots of space between SiNW arrays. These structure can capture much more air. Although SiNW arrays come in many advantages, they are still limited by uniformity, and expensive equipment. This study is focus on how to lower the cost and promote the yield of the process. In this study, wet metal-assisted chemical etching is used to lower the cost. At the mean time, NaBH4 is used to control the surface morphology of sliver nanoparticles and they are deposed on the silicon substrate. Finally, the sliver deposed substrate is put into HF/H2O2 etching solution. There is a different depose method in this experiment. Using nano sliver particle and two-step etching process has lower the disturbance in etching solution. This method can make SiNW arrays can be more order than traditional wet metal-assisted chemical etching.
摘要 I
ABSTRACT II
誌謝 III
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 原理與文獻回顧 4
2.1 矽奈米柱陣列 4
2.2奈米線製作方法 5
2.2.1化學氣象沉積 (CVD) 5
2.2.2氣-液-固生長(VLS) 6
2.2.3氧化物輔助生長法(OAG) 8
2.2.4金屬輔助化學蝕刻法(MACE) 9
2.3奈米材料 12
2.3.1表面效應 12
2.3.2小尺寸效應 13
2.3.3量子尺寸效應 14
2.3.4奈米粒子製備方法 15
2.4銀金屬介紹 18
2.4.1奈米銀 18
第三章 實驗原理與實驗步驟 20
3.1實驗材料與器材 20
3.2分析儀器介紹 22
3.3實驗原理與方法 24
3.4實驗步驟 28
3.4.1矽晶圓清洗 29
3.4.2奈米銀配製 29
3.4.3金屬輔助蝕刻製作矽奈米柱 30
第四章 結果與討論 32
4.1不同沉積時間銀奈米粒子形貌的探討 32
4.2奈米銀沉積製作矽奈米柱 33
4.3奈米柱長短與接觸角的關係 35
第五章 結論 52
第六章 參考文獻 54

[1] Garnett, E. and P. Yang "Light trapping in silicon nanowire solarcells." Nano letters 2010, 10(3): 1082-1087.
[2] Hwang, N. M., W. S. Cheong, et al. "Growth of silicon nanowires by chemical vapor deposition:approach by charged cluster mode." Journal of Crystal Growth 2000, 218: 33-39
[3] Surawijaya, A., I. Anshori, et al. "Silicon Nanowire (SiNW) Growth Using Vapor Liquid Solid Method with Gold Nanoparticle (Au-np) Catalyst." International Conference on Electrical Engineering and Informatics: 2011, 17-19.
[4] Zhang., R. Q., Y. Lifshitz., et al. "Oxide‐Assisted Growth of Semiconducting Nanowires." Advanced Materials 2003, 635 - 640.
[5] Legtenberg, R., H. Jansen, et al. "Anisotrapic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures " The Electrochemical Society 1995, 142: 2020-2028.
[6] Fu, Y. Q., A. Colli, et al. "Deep reactive ion etching as a tool for nanostructure fabrication." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2009 27(3): 1520.
[7] Mavrokefalos, A., S. E. Han, et al. "Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications." Nano letters 2012, 12(6): 2792-2796.
[8] Wagner, R. S. and W. C. Ellis. "The vapor-Liquid-Solid Mechanism of Crystal Growth and Its Application to Silicon." TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AlME 1965 233: 1053-1064.
[9] Abdul Rashid, J. I., J. Abdullah, et al. "The Development of Silicon Nanowire as Sensing Material and Its Applications." Journal of Nanomaterials 2013, 1-16.
[10] Shimizu, T., T. Xie, et al. "Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Arrays on a Si(100) Substrate Using an Anodic Aluminum Oxide Template." Advanced materials 2007, 19(7): 917-920.
[11] Schmidt, V., J. V. Wittemann, et al. "Growth, Thermodynamics, and Electrical Properties of Silicon Nanowires." American Chemical Society 2010, 110: 361-388.
[12] Shi, W. S., Y. F. Zheng, et al. "Oxide-assisted growth and optical characterization of gallium-arsenide nanowires." Applied Physics Letters 2001, 78(21): 3304.
[13] Dimova-Malinovska, D., M. Sendova-Vassileva, et al. "Preparation of thin porous silicon layers by stain etching." Thin Solid Films 1997, 297: 9-12.
[14] Li, X. and P. W. Bohn. "Metal-assisted chemical etching in HF/H2O2 produces porous silicon." Applied Physics Letters 2000, 77(16): 2572.
[15] Smith, Z. R., R. L. Smith, et al. "Mechanism of nanowire formation in metal assisted chemical etching." Electrochimica Acta 2013, 92: 139-147.
[16] Han, H., Z. Huang, et al. "Metal-assisted chemical etching of silicon and nanotechnology applications." Nano Today 2014, 9(3): 271-304.
[17] Peng, K., H. Fang, et al. "Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution." Chemistry 2006, 12(30): 7942-7947.
[18] Geyer, N., B. Fuhrmann, et al. "Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires." ACS applied materials & interfaces 2013, 5(10): 4302-4308.
[19] Lai, C. Q., W. Zheng, et al. "Metal assisted anodic etching of silicon." Nanoscale 2015, 7(25): 11123-11134.
[20] Backes, A. and U. Schmid "Impact of doping level on the metal assisted chemical etching of p-type silicon." Sensors and Actuators B: Chemical 2014, 193: 883-887.
[21] Huang, Z., N. Geyer, et al. "Metal-assisted chemical etching of silicon: a review." Advanced materials 2011, 23(2): 285-308.
[22] Liu, Y., W. Sun, et al. "Fabrication of bifacial wafer-scale silicon nanowire arrays with ultra-high aspect ratio through controllable metal-assisted chemical etching." Materials Letters 2015, 139: 437-442.
[23] Guozhong Cao, Ying Wang "Nanostructures and Nanomaterials: Synthesis, Properties, and Applications"Imperial College Press 2004
[24] Zielińska, A., E. Skwarek, et al. "Preparation of silver nanoparticles with controlled particle size." Procedia Chemistry 2009, 1(2): 1560-1566.
[25] Goldstein, A. N., C. M. Echer, et al. "Melting in Semiconductor Nanocrystals." Science 1992, 256: 1425-1427.
[26] Sanosh, K. P., M.-C. Chu, et al. "Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition." Current Applied Physics 2009, 9(6): 1459-1462.
[27] A.I.Ekimov, Al.L.Efros, et al. "QUANTUM SIZE EFFECT IN SEMICONDUCTOR MICROCRYSTALS." Solid State Communications 1985, 56: 921-924.
[28] Kima, J., S. Qina, et al. "Quantum size effects on the work function of metallic thin film nanostructures." Proceedings of the National Academy of Sciences 2010, 107(29): 12761–12765.
[29] 郭清癸, 黃俊傑, 牟中原. "金屬奈米粒子的製造." 物理雙月刊 2001, 23(6): 614-624.
[30] 簡紋濱,陳怡然 "奈米顆粒的磁性." 物理雙月刊 2006, 28(5): 831-835.
[31] Theivasanthi, T. and M. Alagar "Anti-bacterial Studies of Silver Nanoparticles." Physics 2011
[32] Prabhu, S. and E. K. Poulose "Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects." International Nano Letters 2012, 2(1).
[33] Kandarp Mavani and M. Shah "Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent." International Journal of Engineering Research & Technology 2013, 2(3): 1-5
[34] 彭御賢, 楊志豪, et al. "以檸檬酸鈉作為分散劑與螯合劑搭配無電電鍍法合成銀銅殼核結構粉體之研究." 科學與工程技術期刊 2012, 8(2): 1-9.
[35] Sally D. Solomon, Mozghan Bahadory, et al. "Synthesis and Study of Silver Nanoparticles." Journal of Chemical Education 2007, 84(2): 233-325.
[36] Huang, Z. G., X. X. Lin, et al. "One-step-MACE nano/microstructures for high-efficient large-size multicrystalline Si solar cells." Solar Energy Materials and Solar Cells 2015, 143: 302-310.
[37] Peng, K. Q., J. J. Hu, et al. "Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles." Advanced Functional Materials 2006, 16(3): 387-394.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top