|
[1]. J. T. Houghton, Ding. Y, Griggs. D. J, Noguer. M, van der Linden. P. J, Dai. X, Maskell. K, Johnson. C. A, Climate change 2001: The scientific basis, Cambridge: Cambridge University Press, 2001. [2]. R. E. Smalley, Our energy challenge, Energy & nanotechnology conference, Rice University, 2003. [3]. C. Ruhl, Energy in perspective: BP statistical review of word energy 2007, Deputy chief economist: London, 2007. [4]. J. Milewski, K. Swirski, M. Santarelli, P. Leone, Advanced method of solid oxide fuel cell modeling, London: Springer, 2011. [5]. Y. Patcharavorachot, N.P. Brandon, W. Paengjuntuek, S. Assabumrungrat, A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionic., Vol. 181, pp. 1568-1576 (2010). [6]. Y. Patcharavorachot, W. Paengjuntuek, S. Assabumrungrat, A. Arpornwichanop, “Performance evaluation of combined solid oxide fuel cells with different electrolytes,” International Journal of Hydrogen Energy., Vol. 35, pp. 4301-4310 (2010). [7]. C. Thanomjit, Y. Patcharavorachot, P. Ponpesh, A. Arpornwichanop, “Thermodynamic analysis of solid oxide fuel cell system using different ethanol reforming process,” International Journal of Hydrogen Energy., Vol 40, pp. 6950-6958 (2015). [8]. A. Arpornwichanop, Y. Patcharavorachot, S. Assabumrungrat, “Analysis of a proton-conducting SOFC with direct internal reforming,” Chemical Engineering Science., Vol. 65, pp. 581-589 (2010). [9]. L. Zhu, L. Zhang, A. V. Virkar, “A parametric model for solid oxide fuel cells based on measurements made on cell materials and components”, Journal of Power Sources., Vol. 291, pp. 138-155 (2015). [10]. F. Zabihian, Alan S. Fung, “Performance analysis of hybrid solid oxide fuel cell and gas turbine cycle: Application of alternative fuels,” Energy Conversion and Management., Vol. 76, pp. 571-580 (2013). [11]. J. Jia, Q. Li, M. Luo, L. Wei, A. Abudula, “Effects of gas recycle on performance of solid oxide fuel cell power systems,” Energy., Vol. 36, pp. 1068-1075 (2011). [12]. R. Peters, R. Deja, L. Blum, J. Pennanen, J. Kiviaho, T. Hakala, “Analysis of solid oxide fuel cell system concepts with anode recycling,” International Journal of Hydrogen Energy., Vol. 38, pp. 6809-6820 (2013). [13]. D. Cocco, V. Tola, “Externally reformed solid oxide fuel cell-micro-gas turbine (SOFC-MGT) hybrid systems fueled by methanol and di-methyl-ether (DME),” Energy., Vol. 34, pp. 2124-2130 (2009). [14]. Denver F. Cheddie, R. Murray, “Thermo-economic modeling of a solid oxide fuel cell/gas turbine power plant with semi-direct coupling and anode recycling,” International Journal of Hydrogen Energy., Vol. 35, pp. 11208-11215 (2010). [15]. J. Pirkandi, M. Ghassemi, M. H. Hamedi, R. Mohammadi, “Electrochemical and thermodynamic modeling of a CHP system using tubular solid oxide fuel cell (SOFC-CHP),” Journal of Cleaner Production., Vol. 29-30, pp. 151-162 (2012). [16]. M. Ni, D. Y. C. Leung, M. K. H. Leung, “Mathematical modeling of ammonia–fed solid oxide fuel cells with different electrolytes,” International Journal of Hydrogen Energy., Vol. 33, pp. 5765-5772 (2008). [17]. M. Ni, “The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels,” International Journal of Hydrogen Energy., Vol. 38, pp. 2846-2858 (2013). [18]. M. Ni, M. K. H. Leung, D. Y. C. Leung, “Theoretical analysis of reversible solid oxide fuel cell based on proton-conducting electrolyte,” Journal of Power Sources., Vol. 177, pp. 369-375 (2008). [19]. Ni. M, Leung. D. Y. C, Leung. M. K. H, “Modeling of methane fed solid oxide fuel cells: comparison between proton conducting electrolyte and oxygen ion conducting electrolyte,” Journal of Power Sources., Vol. 183, pp. 133-142 (2008). [20]. M. Ni, D. Y. C. Leung, M. K. H. Leung, “Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte,” Journal of Power Sources., Vol. 183, pp. 687-692 (2008). [21]. M. Ni, D. Y. C. Leung, M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” Journal of Power Sources., Vol. 183, pp. 682-686 (2008). [22]. S.H. Chan, H.K. Ho, Y. Tian, “Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant,” Journal of Power Sources, Vol. 109, pp. 111-120 (2002). [23]. S. H Chan, K.A Khor, Z. T Xia, “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness,” Journal of Power Sources., Vol. 93, pp. 130-140 (2001). [24]. F. Calise, M. Dentice d’Accadia, A. Palombo, L. Vanoli, “Simulation and exergy analysis of a hybrid solid oxide fuel cell (SOFC)-gas turbine system,” Energy., Vol. 31, pp. 3278-3299 (2006). [25]. Ralph-Uwe Dietrich, J. Oelze, A. Lindermeir, C. Spitta, M. Steffen, T. Küster, S. Chen, C. Schlitzberger, R. Leithner, “Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle – Results for a small scale propane driven unit,” Journal of Power Sources., Vol. 196, pp. 7152-7160 (2011). [26]. R.J. Braun, S.A. Klein, D.T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications,” Journal of Power Sources., Vol. 158, pp. 1290-1305 (2006). [27]. S. Wahl, A. G. Segarra, P. Horstmann, “Andreas Friedrich, Modeling of a thermally integrated 10 kW planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction,” Journal of Power Sources., Vol. 279, pp. 656-666 (2015). [28]. M. Carré, R. Brandenburger, W. Friede, F. Lapicque, U. Limbeck, Pedro da Silva, “Feed-forward control of a solid oxide fuel cell system with anode offgas recycle,” Journal of Power Sources., Vol. 282, pp. 498-510 (2015). [29]. L. Duan, K. Huang, X. Zhang, Y. Yang, “Comparison study on different SOFC hybrid system with zero-CO2 emission,” Energy, Vol. 58, pp. 66-77 (2013). [30]. W. Doherty, A. Reynolds, D. Kennedy, “Process simulation of biomass gasification integrated with a solid oxide fuel cell stack,” Journal of Power Sources., Vol. 277, pp. 292-303 (2015). [31]. M. Ni, M. K. H. Leung, Dennis Y.C. Leung, “Parametric study of solid oxide fuel cell performance,” Energy conversion and management., Vol. 48, pp. 1525-1535 (2007). [32]. A.R. Potter, R.T. Baker, “Impedance studies on Pt/SrCe0.95Yb0.05O3/Pt under dried and humidified air, argon and hydrogen,” Solid State Ionic., Vol. 177, pp. 1917-1924 (2006). [33]. S. Freni, G. Maggio, S. Cavallaro, “Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach,” Journal of Power Sources., Vol. 62, pp. 67-73 (1996). [34]. I. Iwahara, “High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production,” Solid State Ionic., Vol. 28-30, pp. 573-578 (1988). [35]. M. Ebrahimi, I. Moradpoor, Combined solid oxide fuel cell, micro-gas turbine and organic Rankine cycle for power generation (SOFC-MGT-ORC), Energy Conversion and Management., Vol. 116, pp. 120-133 (2016). [36]. J. Palsson, A. Selimovic, L. Sjunnesson, “Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation,” Journal of Power Sources, Vol. 86, pp. 442-448 (2000). [37]. P. Costamagna, L. Magistri, A. F. Massardo, “Design and part-load performance of hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine,” Journal of Power Sources, Vol. 96, 352-368(2001). [38]. S.H. Chan, H.K. Ho, Y. Tian, “Multi-level modeling of SOFC-gas turbine hybrid system,” International Journal of Hydrogen Energy, Vol. 28, pp. 889-900 (2013). [39]. Y. Inui, S. Yanagisawa, T. Ishida, “Proposal of high performance SOFC combined power generation system with carbon dioxide recovery,” Energy Conversion and Management., Vol. 44, pp. 597-609 (2003). [40]. F. Calise, A. Palombo, L. Vanoli, “Design and partial load exergy analysis of hybrid SOFC-GT power plant,” Journal of Power Sources., Vol. 158, pp. 225-244 (2006). [41]. T. Araki, T. Ohba, S. Takezawa, K. Onda, Y. Sakaki, “Cycle analysis of planar SOFC power generation with serial connection of low and high temperature SOFCs,” Journal of Power Sources., Vol. 158, pp. 52-59 (2006). [42]. T. Araki, T. Taniuchi, D. Sunakawa, M. Nagahama, K. Onda, T. Kato, “Cycle analysis of low and high H2 utilization SOFC/gas turbine combined cycle for CO2 recovery,” Journal of Power Sources., Vol. 171, pp. 464-470 (2007). [43]. Fuel cell handbook, 7th ed., EG&G Technical Services Inc., U.S. Department of Energy, Morgantown, (WV, USA), November 2004. Pp. 57-60.
|