(18.206.177.17) 您好!臺灣時間:2021/04/17 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅彥達
研究生(外文):Yanuar Rohmat Aji Pradana
論文名稱:探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
論文名稱(外文):Study on the Mechanical and Corrosion Properties of the Partial Crystallized Zr54Al17Co29 Bulk Metallic Glass
指導教授:鄭憲清
指導教授(外文):Dr. Jason Shian-Ching Jang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:122
中文關鍵詞:鋯鋁鈷金屬玻璃恆溫熱處理奈米晶機械性質耐腐蝕
外文關鍵詞:Zr54Al17Co29 BMGisothermal annealingnanocrystalmechanical propertiescorrosion resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於金屬玻璃具有優異的機械性能與抗菌特性,被嘗試應用於生醫器械與駐植物上。雖然添加銅、鎳或鈹可以提升鋯基金屬玻璃合金之玻璃形成能力,但是,本研究避免使用對人體有害的元素,選擇低細胞毒性的鋯鋁鈷合金系統,探討不同結晶率鋯鋁鈷金屬玻璃樣品之機械性質與耐腐蝕性質。
以電弧熔煉與真空吸鑄製備直徑2, 3 與4 mm鋯鋁鈷金屬玻璃棒材,初步以X光繞射檢測其非晶性分析,在低角度(30°~50°)呈現非晶質合金典型的寬廣繞射鋒;以DSC量測後再分析其特徵溫度,鋯鋁鈷金屬玻璃之玻璃轉換溫度、結晶溫度與過冷液相區間分別為:742、794與52 K,且其活化能為:233與253 kJ mol-1(第一與第二峰值)。在過冷液相區間進行恆溫熱處理,製備結晶率為:6.6、14.5、19.8、25.5、31.5、36.4與40.1%樣品。在機械性質方面,隨著結晶率上升硬度亦呈現上升趨勢,硬度結果落在540 ± 5到575 ± 5之間;壓縮測試結果顯示結晶率6.6%的樣品具有最優異的拉伸強度與塑性變形,分別為:2160 ± 110 MPa 與 4.7 ± 0.2%,相較於未經熱處理樣品其拉伸強度與塑性變形僅有:2130 ± 75 MPa 與 2.2 ± 1.6%,這是由於基地內結晶顆粒阻擋了shear band 的前進,同時,在結晶率6.6%樣品的破裂面上可以觀察到許多葉脈紋的生成,佐證此一論點。以恆電位法分析鋯鋁鈷樣品的耐腐蝕性能,6.6%結晶率的樣品呈現與316不鏽鋼相似的結果。根據本研究的結果,評估鋯鋁鈷金屬玻璃的確可以被應用在生醫器械上。

Development of metallic materials is recently essential for biomedical application. Therefore, Zr-based bulk metallic glasses become favorable due to their attractive properties. Zr-Al-Co BMGs, as low-toxic material, having less possibility to harm the human body compared with other Cu-, Ni-, and Be-containing Zr-based BMGs, however, most of them show the limited ductility. The structural modification through partial crystallization on Zr54Al17Co29 BMG was obtained by isothermal annealing and the correlation with the mechanical and corrosion resistance have been investigated. Zr54Al17Co29 BMG rod with diameter of 2, 3, and 4 mm was successfully fabricated by arc melting and suction casting, afterwards, the amorphous properties were examined by XRD, SEM, and DSC. A single broad peak of XRD pattern, good chemical homogeneity, and the information of Tg, Tx, and ∆Tx (742, 794, and 52 K) were obtained from the analyses, indicating the sample was fully amorphous. By Kissinger plots, activation energies of crystallization for the first and second exothermic peak are determined to be 233 and 253 kJ mol-1. The isothermal annealing was conducted at the temperature within SCL region for different times that was determined by JMA isothermal analysis in order to variate sample crystallinities. TEM analysis reveals that ZrCo2Al crystal phase with size of 10 nm is observed from sample with 40.1% crystallinity. Mechanical properties of as-cast and partially crystallized samples containing 6.6; 14.5; 19.8; 25.5; 31.5; 36.4; and 40.1% crystallinities were studied by hardness and compression test. The results reveal that the hardness slightly increases with increasing the crystallinity, in range 540 ± 5 to 575 ± 5 Hv. However, the results of compression test show a different trend, yield strength and plastic strain are significantly improved when the sample reaches 6.6% crystallinity. Afterwards, the deteriorating effect of excess nanocrystal contents for the sample with higher crystallinity on the plastic strain was observed while yield strength remains constant. The sample containing 6.6% crystallinity shows the remarkable improvement of yield strength and plastic strain (2160 ± 110 MPa and 4.7 ± 0.2%), higher than the as-cast counterparts (2130 ± 75 MPa and 2.2 ± 1.6%). This improvement is attributed to the optimum nanocrystal content to restrict the shear bands propagation accompanied without any free volume reduction effect due to short annealing time. In addition, the fracture surface morphology of the sample with 6.6% crystallinity shows the mixed vein and river-like pattern, indicating strong interaction between shear bands and nanocrystals. Moreover, the as-cast and partially crystallized with 6.6% crystallinity samples show similar corrosion resistance and comparable with the 316 stainless steel by potentiodynamic polarization test. In summary, the Zr54Al17Co29 BMG with 6.6% crystallinity is believed as promising candidate for biomaterial applications.
Contents
Abstract I
中文摘要 III
Acknowledgements IV
Contents V
List of Tables VIII
List of Figures X
Chapter 1. Introduction 1
1.1 Background of Study 1
1.2 Motivation 3
Chapter 2. Theoretical Aspect and Literature Study 5
2.1 Bulk Metallic Glasses 5
2.1.1 History and Development of BMGs 5
2.1.2 Characteristic 7
2.2 Empirical Rules of BMGs Formation 8
2.3 Thermal Properties of BMGs 9
2.4 Glass Forming Ability 10
2.5 Mechanical properties of BMGs 12
2.5.1 Strength and Hardness 13
2.5.2 Ductility 15
2.6 Bulk Metallic Glass Composites 17
2.7 Crystallization 18
2.7.1 Definition of Crystallization 18
2.7.2 Partial Crystallization by Annealing 20
2.7.3 Crystallinity Measurement 21
2.8 Corrosion Properties of BMGs 22
2.8.1 Effect of Crystallinity on Corrosion Behavior of BMGs24
2.8.2 Potentiodynamic Polarization 25
2.8.3 Hank’s Balanced Salt Solution (HBSS) 27
2.9 Zr-Al-Co BMGs 27
Chapter 3. Experimental Method 34
3.1 Experimental Procedure 34
3.2 Sample Preparation 34
3.2.1 Element Measurement 34
3.2.2 Arc Melting 35
3.2.3 Suction Casting 35
3.2.4 Density Measurement by Archimedes’ Principle 36
3.2.5 Sample Cutting and Polishing 36
3.3 Isothermal Annealing 37
3.4 Thermal Analysis 38
3.5 Structural Analyses 39
3.5.1 X-Ray Diffraction (XRD) 39
3.5.2 Scanning Electron Microscopy (SEM) 39
3.5.3 Transmission Electron Microscopy (TEM) 40
3.6 Mechanical Tests 40
3.6.1 Hardness Test 40
3.6.2 Compression Test 41
3.7 Corrosion Test 41
3.7.1 Sample Preparation for Corrosion Test 41
3.7.2 Potentiodynamic Polarization and Tafel Plot Extrapolation42
Chapter 4. Results and Discussions 55
4.1 Zr54Al17Co29 BMG Preparation 55
4.1.1 Arc Melting and Suction Casting 55
4.1.2 X-Ray Diffraction Analysis 55
4.1.3 Compositional Analyses 55
4.1.4 Thermal Analysis 56
4.2 Subsequent Annealing Treatment and Analyses 58
4.2.1 Annealing Process 58
4.2.2 Thermal Analysis 58
4.2.3 Structural Analyses 60
4.2.4 Mechanical Properties 61
4.2.5 Corrosion Properties 66
Chapter 5. Conclusion 92
References 94


References
[1] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Materialia, vol. 48, pp 279-306, 2000.
[2] A. L. Greer, “Metallic Glasses,” Science, vol. 267, pp. 1947, 1995.
[3] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma, “Atomic packing and short-to-medium range order in metallic glasses,” Nature, vol. 439, page 419-425, 2006.
[4] T. Egami, “Understanding the properties and structure of metallic glasses at the atomic level,” Journal of the Minerals Metals and Materials Society, vol. 62, pp. 70 -75, 2010.
[5] A. Hirata, P. F. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A. R. Yavari, T. Sakurai, and M. W. Chen, “Direct observation of local atomic order in a metallic glass,” Nature Materials, vol. 10, pp. 28-33, 2011.
[6] W. Klement, R. H. Willens, P. Duwez, “Non-crystalline structure in solidified gold-silicon alloys,” Nature, vol. 187, pp 869 - 870, 1960.
[7] J. C. Huang, J. P. Chu, and J. S. C. Jang, “Recent progress in metallic glasses in Taiwan,” Intermetallics, vol. 17, no. 12, pp. 973–987, 2009.
[8] A. Inoue and A. Takeuchi, “Recent development and application products of bulk glassy alloys,” Acta Materialia, vol. 59, no. 6, pp. 2243–2267, 2011.
[9] A. Inoue and T. Zhang, “Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method,” Material Transitions, JIM, vol. 37, pp. 185–187, 1996.
[10] A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5,” Applied Physics Letter, vol. 63, pp. 2342–2344, 1993
[11] Z. W. Hsiao, C. C. Fu, P. H. Tsai, J. S. C. Jang, S. R. Jian, and J. C. Huang, “Effect of nano-crystallization on the mechanical properties of the (Zr53Cu30Ni9Al8)99.5Si0.5 bulk metallic glasses,” Materials Science Forum, vol. 638-642, pp 2933-2937, 2010.
[12] Y. Yokoyama, K. Fujita, A.R. Yavari, and A. Inoue, “Malleable hypoeutectic Zr–Ni–Cu–Al bulk glassy alloys with tensile plastic elongation at room temperature,” Philosophical Magazine Letters, vol. 89, Issue 5, 2009.
[13] X. Hui, S.N. Liu, S.J. Pang, L.C. Zhuo, T. Zhang, G.L. Chena and Z.K. Liu,”High-zirconium-based bulk metallic glasses with large plasticity,” Scripta Materialia, vol. 63, pp. 239–242, 2010.
[14] N. Hua, L. Huang, W. He, S. Pang, and T. Zhang, “A Ni-free high-zirconium-based bulk metallic glass with enhanced plasticity and biocompatibility,” Journal of Non-Crystalline Solids, vol. 376, pp. 133–138, 2013.
[15] D. Wang, G. Liao, J. Pan, Z. Tang, P. Peng, L. Liu, and T. Shi, “Superplastic micro-forming of Zr65Cu17.5Ni10Al7.5 bulk metallic glass with silicon mold using hot embossing technology,” Journal Alloys Compound, vol. 484, pp. 118–122, 2009.
[16] M. Z. Ma, R. P. Liu, Y. Xiao, D. C. Lou, L. Liu, Q. Wang, and W. K. Wang, “Wear resistance of Zr-based bulk metallic glass applied in bearing rollers,” Materials Science and Engineering A, vol 386, pp. 326–330, 2004.
[17] L. Huang, D.C. Qiao, B.A. Green, P.K. Liaw, J.F. Wang, S.J. Pang, and T. Zhang, “Biocorrosion study on zirconium-based bulk-metallic glasses,” Intermetallics, vol. 17, pp. 195–199, 2009.
[18] A. Kawashima, T. Wada, K. Ohmura, G.Q. Xie, and A. Inoue, “A Ni- and Cu-free Zr-based bulk metallic glass with excellent resistance to stress corrosion cracking in simulated body fluids”, Materials Science and Engieering A, vol. 542, pp. 140–146, 2012.
[19] B. Guan, X. Shi , Z. Dan. G. Xie. M. Niinomi, and F. Qin, “Corrosion behavior, mechanical properties and cell cytotoxity of Zr-based bulk metallic glasses,” Intermetallics, vol. 72, pp. 69–75, 2016.
[20] IARC, “Monographs on evaluation of carcinogenic risk of chemicals to humans, Vol. 23: some metals and metallic compounds - summary of data reported and evaluation,” WHO/IARC, Lyon, France, 1980.
[21] W. M. Elshahawy, I. Watanabe, and P. Kramer, “In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials,” Dental Materials, vol. 25, no. 12, pp. 1551–1555, 2009.
[22] J. C. Wataha, P. E. Lockwood, and A. Schedle. “Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low-dose exposures,” Journal of Biomedical Materials Research, vol. 52, no. 2, pp. 360-364, 2000.
[23] M. Niinomi, M. Nakai, and J. Hieda, “Development of new metallic alloys for biomedical applications,” Acta Biomaterialia, vol. 8, pp. 3888–3903, 2012.
[24] C. Balagna, S. Spriano, and M.G. Faga, “Characterization of Co-Cr-Mo alloy after a thermal treatment for high wear resistance,” Materials Science and Engineering A, vol. 32, pp. 1868–1877, 2012.
[25] T. Wada, F.X. Qin, X.M. Wang, M. Yoshimura, A. Inoue, N. Sugiyama, R. Ito, and N. Matsushita, “Formation and bioactivation of Zr–Al–Co bulk metallic glasses,” Journal Material Research, vol. 24, pp. 2941–2948, 2009.
[26] J. Tan, F. S. Pan, Y. Zhang, B. A. Sun, J. He, N. Zheng, M. Stoica, U. Kühn, and J. Eckert, “Formation of Zr-Co-Al bulk metallic glasses with high strength and large plasticity,” Intermetallics, vol. 31, pp. 282–286, 2012.
[27] J. Tan, Y.Zhang, M.Stoica, U.Kuhn, N.Mattern, F. S. Pan, and J. Eckert, “Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass,” Intermetallics, vol. 19, no 4, pp. 567–571, 2011.
[28] T. H. Li, K. T. Hsu, P. H. Tsai, J. S. C. Jang, and J. C. Huang, “Effect of the multiple-metastable crystalline phases on predicting the glass forming ability of ZrAlCo amorphous metallic alloys,” unpublished.
[29] F. X. Qin, X. M.Wang, and A. Inoue, “Effect of annealing on microstructure and mechanical property of a Ti-Zr-Cu-Pd bulk metallic glass,” Intermetallics, vol. 15, no. 10, pp. 1337–1342, 2007.
[30] K. S. Lee, H. J. Jun, D. W. Kim, J. Eckert, and Y. W. Chang, “Structural relaxation and crystallization of a Zr44Ti11CU9.8Ni10.2Be25 bulk metallic glass,” Materials Transactions, vol. 48, no. 7, pp. 1722–1728, 2007.
[31] H. Sakamoto, T. Yamada, N. Okumura, and T. Sato, “Improvement in brittleness of amorphous Fe-Si-B-C alloy ribbons by controlling casting conditions,” Materials Science and Engineering A, vol. 206, no. 1, pp. 150-153, 1996.
[32] M. Chen, A. Inoue, W. Zhang, and T. Sakurai, “Extraordinary plasticity of ductile bulk metallic glasses,” Physical Review Letters, vol. 96, no. 24, pp. 1–4, 2006.
[33] C. Fan and A. Inoue, “Ductility of bulk nanocrystalline composites and metallic glasses at room temperature,” Applied Physics Letters, vol. 77, no. 1, p. 46, 2000.
[34] R. Wei, X. L. Wang, S. Yang, F. Jiang, and L. He, “Formation of CuZr-based bulk metallic glass composites containing nanometer-scale B2-CuZr phase through sub-Tg annealing,” Journal of Alloys and Compounds, vol. 617, pp. 699–706, 2014.
[35] S. González, E. Pellicer, S. Suriñach, M. D. Baró, and J. Sort, “Mechanical and corrosion behaviour of as-cast and annealed Zr60Cu20Al10Fe5Ti5 bulk metallic glass,” Intermetallics, vol. 28, pp. 149–155, 2012.
[36] H. S. Chen. “Glassy Metals,” Report Progress Physics, vol. 43, no. 4, pp. 353-432, 1980.
[37] A. J. Drehman, A. L. Greer and D. Turnbull. “Bulk formation of a metallic glass: Pd40Ni40P20,” Applied Physics Letter. vol. 41, pp. 716, 1982.
[38] T. G. Nieh and J. Wadsworth. “Homogeneous deformation of metallic glasses,” Scripta Materialia, vol. 54, issue 3, pp. 387-392, 2006.
[39] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto, “Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy,” Materials Transactions, JIM, vol. 34, no. 12. pp. 1234–1237, 1993
[40] N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y.Q. Zeng, A. Inoue. “The world’s biggest glassy alloy ever made” Intermetallics, vol. 30, pp. 19-24, 2012.
[41] J. S. C. Jang, Y. S. Chang, T. H. Li, P. J. Hsieh, J. C. Huang, and C. Y. A. Tsao, “Plasticity enhancement of Mg58Cu28.5Gd11Ag2.5 based bulk metallic glass composites dispersion strengthened by Ti particles,” Journal of Alloys and Compounds, vol. 504, pp. S102–S105, 2010.
[42] J. C. Qiao and J. M. Pelletier, “Dynamic mechanical relaxation in bulk metallic glasses: A Review,” Journal of Materials Science and Technology, vol. 30, no. 6, pp. 523–545, 2014.
[43] N. Nishiyama and A. Inoue, "Direct comparasion between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd-Cu-Ni-P alloys," Material Transaction, vol. 43, pp. 1913-1917, 2002.
[44] C. Suryanarayana and A. Inoue, “Bulk Metallic Glasses”, Taylor and Francis Group, FL: CRC Press, 2011.
[45] D. Turnbull, “Under what conditions can a glass be formed?,” Contemporer Physics, vol. 10, no. 5, pp. 473-488, 1969.
[46] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”. Material. Transaction, JIM, vol. 36, pp. 866–875, 1995.
[47] Z. P. Lu and C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses,” Acta Materialia, vol. 50, no. 13, pp. 3501–3512, 2002.
[48] X.H. Du, J.C. Huang, C.T. Liu, and Z.P. Lu, “New criterion of glass forming ability for bulk metallic glasses,” Journal Applied Physics, vol. 101, pp 086108-1–086108-3, 2007.
[49] P. Blyskun, P. Maj, M. Kowalczyk, J. Latuch, and T. Kulik, “Relation of various GFA indicators to the critical diameter of Zr-based BMGs,” Journal of Alloys and Compounds, vol. 625, pp. 13–17, 2014.
[50] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, vol. 27, issue 1, pp. 47-58, 1979.
[51] F. Spaepen, “ A microscopic mechanism for steady state inhomogeneous flow in metallic glasses,” Acta Metallurgica, vol. 25, issue 4, pp. 407-415, 1977.
[52] C. A. Schuh, T. C. Hufnagel, and U. Ramamurty, “Mechanical behavior of amorphous alloys,” Acta Materialia, vol. 55, no. 12, pp. 4067–4109, 2007.
[53] P. S. Steif, F. Spaepen, and J. W. Hutchinson, “Strain localization in amorphous metals”, Acta Metallurgica, vol. 30, issue 2, pp. 447-455, 1982.
[54] J. J. Lewandowski and A. L. Greer, “Temperature rise at shear bands in metallic glasses,” Nature Materials, vol. 5, pp. 15 – 18, 2006.
[55] T. Zhang and A. Inoue, “New Glassy Zr-Al-Fe and Zr-Al-Co Alloys with a Large Supercooled Liquid Region.,” Materials Transactions, vol. 43, no. 2, pp. 267–270, 2002.
[56] J. Tan, C. J. Li, Y. H. Jiang, R. Zhou, and J. Eckert, “Correlation between internal states and strength in bulk metallic glass,” PRICM: 8 Pacific Rim International Congress on Advanced Materials, pp. 3199-3206, 2013.
[57] G. He, Z.F. Zhang, W. Loser, J. Eckert, and L. Schultz, “Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass,” Acta Materialia, vol. 51, pp. 2383–2395, 2003.
[58] J. J. Lewandowski, W. H. Wang, and A. L. Greer, “Intrinsic plasticity or brittleness of metallic glasses,” Philosophical Magazine Letter, vol. 85, pp. 77–87, 2005.
[59] A. Inoue, “Mechanical properties of Zr-based bulk glassy alloys containing nanoscale compound particles,” Intermetallics, vol. 8, no. 5–6, pp. 455–468, 2000.
[60] K. Hajlaoui, A. R. Yavari, A. LeMoulec, W. J. Botta, F. G. Vaughan, J. Das, A. L. Greer, and Å. Kvick, “Plasticity induced by nanoparticle dispersions in bulk metallic glasses,” Journal of Non-Crystalline Solids, vol. 353, no. 3, pp. 327–331, 2007.
[61] H.E. Kissinger, “Reaction kinetics in differential thermal analysis,” Analysis Chemistry, vol. 29, pp. 1702-1706, 1957.
[62] F. X. Qin, H.F. Zhang, B.Z. Ding, and Z.Q. Hu, “Nanocrystallization kinetics of Ni-based bulk amorphous alloy,” Intermetallics, vol. 12, pp. 1197–1203, 2004.
[63] P. Murali and U. Ramamurty, “Embrittlement of a bulk metallic glass due to sub-Tg annealing,” Acta Materialia, vol. 53, no. 5, pp. 1467–1478, 2005.
[64] K. Mondal, T. Ohkubo, T. Toyama, Y. Nagai, M. Hasegawa, and K. Hono, “The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses,” Acta Materialia, vol. 56, no. 18, pp. 5329–5339, 2008.
[65] G. Kumar, D. Rector, R. D. Conner, and J. Schroers, “Embrittlement of Zr-based bulk metallic glasses,” Acta Materialia, vol. 57, no. 12, pp. 3572–3583, 2009.
[66] H. W. Yang, J. Wen, M. X. Quan, and J. Q. Wang, “Evaluation of the volume fraction of nanocrystals devitrified in Al-based amorphous alloys,” Journal of Non-Crystalline Solids, vol. 355, no. 4–5, pp. 235–238, 2009.
[67] A. L. Greer, “Partially of fully devitrified alloys for mechanical properties,” Materials Science and Engineering A, vol. 304–306, no. 1–2, pp. 68–72, 2001.
[68] A. Gebert, K. Mummert, J. Eckert, and A. Inoue, “Electrochemical investigation on the bulk glass forming Zr55Cu30Al10Ni5 alloy”, Materials and Corrosion, vol. 48, no. 5, pp. 293-297, 1997.
[69] N. Hua, L. Huang, J. Wang, Y. Cao, W. He, S. Pang, and T. Zhang, “Corrosion behavior and in vitro biocompatibility of Zr-Al-Co-Ag bulk metallic glasses: An experimental case study,” Journal of Non-Crystalline Solids, vol. 358, no. 12–13, pp. 1599–1604, 2012.
[70] B. Guan, X. Shi, Z. Dan, G. Xie, M. Niinomi, and F. Qin, “Corrosion behavior, mechanical properties and cell cytotoxity of Zr-based bulk metallic glasses,” Intermetallics, vol. 72, pp. 69–75, 2016.
[71] S.J. Pang, T. Zhang, K. Asami, and A. Inoue, “Formation, corrosion behavior, and mechanical properties of bulk glassy Zr-Al-Co-Nb alloys,” Journal of Materials Research, vol. 8, no. 7, pp. 1652-1658, 2003.
[72] K. Mondal, B.S. Murty, and U.K. Chatterjee, “Electrochemical behaviour of amorphous and nanoquasicrystalline Zr-Pd and Zr-Pt alloys in different environments” Corrosion Science, vol. 47, pp. 2619-2635, 2005.
[73] R. Wang, Y. Wang, J. Yang, J. Sun, and L. Xiong, “Influence of heat treatment on the mechanical properties, corrosion behavior, and biocompatibility of Zr56Al16Co28 bulk metallic glass,” Journal of Non-Crystalline Solids, vol. 411, pp. 45–52, 2015.
[74] C. H. Huang, J. C. Huang, J. B. Li, and J. S. C. Jang, “Simulated body fluid electrochemical response of Zr-based metallic glasses with different degrees of crystallization,” Materials Science and Engineering C, vol. 33, no. 7, pp. 4183–4187, 2013.
[75] W. H. Peter, R. Buchanan, C. Liu, P. Liaw, M. Morrison, J. Horton, C. Carmichael, and J. Wright, “Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state,” Intermetallics, vol. 10, no. 11–12, pp. 1157–1162, 2002.
[76] R. Pierre, “Handbook of Corrosion Engineering," McGraw-Hill Companies, Inc., New York, (1999).
[77] P. H. Tsai, I. S. Huang, T. H. Li, J. S. C. Jang, J. C. Huang, and K. C. Hsieh, “Crystallization behavior and thermal stability of two-glassy phase Zr-based bulk metallic glasses,” Advanced Materials Research, vol. 89–91, pp. 562–567, 2010.
[78] J. S. C. Jang, Y. W. Chen, L. J. Chang, and G. J. Chen, “Crystallization behavior of the Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy,” Materials Chemistry and Physics, vol. 88, no. 1, pp. 227–233, 2004.
[79] J. S. C. Jang, T. H. Hung, and L. J. Chang, “The effect of boron on the thermal properties of the zirconium-based bulk amorphous alloys,” Materials Science and Engineering A, vol. 375–377, no. 1–2 SPEC. ISS., pp. 307–311, 2004.
[80] T. Z. T. Wada A. Inoue, “Formation, thermal stability and mechanical properties in Zr-Al-Co bulk glassy alloys.,” Materials Transactions, vol. 43, no. 11, pp. 4, 2002.
[81] W. H. Jiang, F. X. Liu, H. Choo, and P. K. Liaw, “Effect of structural relaxation on mechanical behavior of a Zr-based bulk-metallic glass,” Materials Transactions, vol. 48, no. 7, pp. 1781–1784, 2007.
[82] A. Concustell, G. Alcala, S. Mato, T. G. Woodcock, A. Gebert, J. Eckert, and M. D. Baro, “Effect of relaxation and primary nanocrystallization on the mechanical properties of Cu60Zr22Ti18 bulk metallic glass,” Intermetallics, vol. 13, no. 11, pp. 1214–1219, 2005.
[83] W. H. Liang, “The effect of tanthalum additions on mechanical properties of Zr-Co-Al amorphous alloy,” M. S. Thesis, Institute of Material Science and Engineering, National Central University, Chungli, Taiwan, 2016.

電子全文 電子全文(網際網路公開日期:20210731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔