(18.232.55.103) 您好!臺灣時間:2021/04/23 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳郁輔
研究生(外文):Yuh-Fu Chen
論文名稱:超音波對1070鋁合金等通道彎角擠製加工及其材料行為效應之研究
指導教授:葉維磬
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:132
中文關鍵詞:超音波等通道彎角擠製
相關次數:
  • 被引用被引用:1
  • 點閱點閱:64
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本文以實驗方式探討超音波振動輔助對於等通道彎角擠製(ECAE)之影響。本文超音波加載方式分為軸向加載、橫向加載及組合雙軸向加載,以最大成形力、成形總能量及平均成形力三個觀點比較不同沖頭行程位置加載超音波振動的影響。
本文並進行超音波拉伸實驗,取得超音波振動下材料拉伸數據,建立材料在超音波加載狀況下的塑性應力-應變關係式。並利用所得之材料參數,進行有限元素模擬分析,驗證有線元素模擬對於超音波輔助加載ECAE之可行性。
實驗結果顯示,在超音波輔助ECAE製程中,不論是單獨施加軸向、橫向或是同時雙軸向加載,對於降低成型力均有良好的效應。利用有限元素模擬分析,調整有限元素模型內的材料性質建立其等效模型,提出超音波軟化及摩擦力減少兩種機制皆存在於超音波輔助ECAE的製程中。

This study aims to explore experimentally the influence of ultrasonic vibration on equal channel angular extrusion (ECAE).The ultrasonic system divided in axial direction, lateral direction and both two direction. Use the maximum forming force, maximum total energy and average forming force to compare the effects of ultrasonic vibration.
In this paper, applying ultrasonic vibration in tensile test. Establish material plastic stress - strain relationship with ultrasonic vibration. Also in Deform-3D finite element software to analyze the equal channel angular extrusion(ECAE) that applied with the ultrasonic vibration.
The experimental results shows that ultrasonic vibration on ECAE, whether in axial direction, lateral direction or simultaneous biaxial loading, for lower forming force and enhance the hardness of the specimen both have good effect. Using the finite element to analyze, adjust the contact conditions and material properties of finite element model to build the equivalent model. Putting forward the acoustic softening and friction reduction are both may exist in process of ultrasonic vibration on ECAE.

摘要 i
目錄 vii
圖目錄 xi
表目錄 xvii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1超音波輔助塑性加工: 2
1.2.2等通道彎角擠製加工: 7
1.3 研究動機 11
第二章 基本理論 13
2.1 等通道彎角擠製(ECAE)製程 13
2.2 超音波基本理論 14
2.2.1 體積效應(volume effect) 15
2.2.2 表面效應(surface effect) 16
第三章 實驗設備及方法 20
3.1 實驗設備 20
3.1.1 ECAE模具 20
3.1.2 超音波振動系統 20
3.1.3 100噸油壓試驗機 21
3.1.4 資料結取系統 21
3.1.5 拉伸試驗機 21
3.1.6 超音波輔助拉伸系統設計 22
3.2 實驗方法 22
3.2.1 ECAE試片製作 22
3.2.2 實驗條件 23
3.2.3 ECAE實驗步驟 24
3.2.4 拉伸試驗 25
3.2.5 超音波加載拉伸試驗 26
第四章 實驗結果與討論 27
4.1超音波振動輔助ECAE 27
4.2超音波振動對於ECAE之影響觀察 27
4.3不同沖頭行程位置加載軸向超音波對於ECAE之影響 28
4.3.1最大成形力及成形總能量 29
4.3.2平均成形力 30
4.4不同行程位置加載橫向超音波對於ECAE之影響 30
4.4.1最大成形力及成形總能量 31
4.4.2平均成形力 32
4.5雙軸向超音波振動對於ECAE之影響 32
4.5.1最大成形力及成形總能量 33
4.5.2平均成形力 34
4.6拉伸試驗 35
4.7超音波輔助拉伸試驗 36
4.8 超音波振動輔助ECAE有限元素分析 37
4.8.1 傳統ECAE有限元素分析 37
4.8.2 超音波輔助ECAE等效模型 38
第五章 結論與建議 40
5-1 結論 40
5-2 建議 42
參考文獻 43
圖片 52
表 84
附錄A 87
附錄B 94
附錄C 101

[1] V. M. Segal, "Materials processing by simple shear," Materials Science and Engineering A197, pp. 157-164, 1995.
[2] F. Blaha and B. Langenecker, "Dehnung von Zink-Kristallen unter Ultraschalleinwirkung," Naturwissenschaften Volume 42, p. 556, 1955.
[3] J. Tsujina, T. Ueoka, H. Sato and K. Takiguchi, "Characteristics of ultrasonic bendingof metal plates using a longitudinal vibration die and punch," IEEE Ultrasonic Symposium, pp. 863-866, 1992.
[4] J. X. Zheng, H. Hu and J. Cheng, "The development of constitutive equations of solid materials under the action of super frequency vibration," Journal of Harbin Institute of Technology Vol.20, No.1, 1997.
[5] T. Jimma, Y. Kasuga, N. Iwaki, O. Miyazawa, E. Mori, K. Ito and H. Hatano, "An application ofultrasonic vibration to the deep drawing process," Journal of Materials Processing Technology Vol.80-81, pp. 406-412, 1998.
[6] 何京力, 聞邦椿. "振動塑性加工的進展及若干問題". 遼寧工學院學報, Vol.19(4), pp. 5-9. 1999.
[7] H. O. K. Kirchner, W. K. Kromp, F. B. Prinz, & P. Trimmel, "Plastic deformation under simultaneous cyclic and unidirectional loading at low and ultrasonic frequencies," Materials science and engineering, Vol.68(2), pp. 197-206. 1985.
[8] K. Siegert, "Influencing the friction in metal forming processes by superimposing ultrasonic waves," CIRP Annals-Manufacturing Technology, Vol. 50, pp. 195-200, 2001.
[9] M. Murakawa and M. Jin, "The utility of radially and ultrasonically vibrated dies in the wiredrawing process," Journal of Materials Processing Technology, Vol. 113, pp. 81-86, 2001.
[10] M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J. C. Hung and Y. C. Tsai, "Simulation of ultrasonic-vibration drawing using the finite element (FEM)," Journal of MaterialsProcessing Technology, Vol. 140, pp. 30-35, 2003.
[11] J. C. Hung and C. H. Hung, "The influence of ultrasonic-vibration on hot upsetting of aluminum alloy," Ultrasonics 43, p. 692–698, 2005.
[12] Y. Daud, M. Lucas and Z. Huang, "Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium," Journal of Materials Processing Technology, pp. 179-190, 2007.
[13] Y. Ashida and H. Aoyama, "Press forming using ultrasonic vibration," Journal of Materials ProcessingTechnology, Vol. 187-188, pp. 118-122, 2007.
[14] J. C. Hung and Y. C. Tsai, "Frictional effect of ultrasonic-vibration on upsetting," Ultrasonics,43, pp. 277-284, 2007.
[15] Mao, Q., N. Coutris, and G. Fadel. "CHARACTERIZATION OF ACOUSTIC SOFTENING OF ALUMINUM 6061 WITHIN A PLASTICITY FRAMEWORK."
[16] 吳哲威, “超音波振動輔助沖切加工之斷面品質研究, 碩士論文,” 國立中央大學, 2011.
[17] Y. Liu, S. Suslov, Q. Han, C. Xu and L. Hua, "Microstructure of the pure copper produced by upsetting with ultrasonic vibration," Materials Letters, Vol. 67, pp. 52-55, 2012.
[18] Z. Yao, G. Y. Kim, L. Faidley, Q. Zou, D. Mei and Z. Chen, "Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting," Journal of Materials Processing Technology 212, p. 640–646, 2012.
[19] Z. Yao, G. Y. Kim, Z. Wang, L. Faidley, Q. Zou , D. Mei and Z. Chen, "Acoustic softening and residual hardening in aluminum: Modeling and experiments," International Journal of Plasticity 39 , pp. 75-87, 2012.
[20] A. T. Witthauer, Z. Yao and G. Y. K. PhD, "Characterization of the Effects of High-Frequency Vibration on Alu- minum and Copper Upsetting," ICOMM 2012 No.51, 2012.
[21] 王子仁, “超音波振動輔助沖切加工之有限元素分析, 碩士論文,” 國立中央大學, 2012.
[22] F. Djavanroodi, H. Ahmadian, K. Koohkan and R. Naseri, "Ultrasonic assisted-ECAP," Ultrasonics, Vol. 53, p. 1089–1096, 2013.
[23] 陳昱華, “超音波振動輔助等通道彎角擠製之初步研究, 碩士論文,” 國立中央大學, 2013.
[24] 黃彬碩, “超音波振動方式輔助等通道彎角擠製之研究, 碩士論文,” 國立中央大學, 2014.
[25] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, "The shearing characteristics associated with equal-channel angular pressing," Materials Science and Engineering: A, 257(2), pp. 328-332, 1998.
[26] M. Furukawa and Z. Horita, "Factors influencing the shearing patterns in equal-channel angular pressing," Materials Science and Engineering: A, 332(1), pp. 97-109, 2002.
[27] W. J. Kim, J. C. Namgung and J. K. Kim, "Analysis of strain uniformity during multi-pressing in equalchannel angular extrusion," Scripta Materialia Vol. 53, pp. 293-298, 2005.
[28] A. V. Nagasekhar, T. H. Yip and H. P. Seow, "Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing," Journal of Materials Processing Technology, Vol. 192–193, pp. 449-452, 2007.
[29] S. Xu, G. Zhao, X. Ma and G. Ren, "Finite element analysis and optimization of equalchannel angular pressing for producing ultra-fine grained materials," Journal of Materials ProcessingTechnology, Vol. 184, pp. 209-216, 2007.
[30] V. Patil, U. Chakkingal and T. S. Prasanna Kumar, "Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation," Journal of Materials Processing Technology, Vol. 209, pp. 89-95, 2009.
[31] A. V. Nagasekhar, S. C. Yoon, Y. Tick-Hon and H. Kim, "An experimental verification of the finite element modeling of equal channel angular pressing," Computational Materials Science, Vol. 46, pp. 347-351, 2009.
[32] F. Djavanroodi and M. Ebrahimi, "Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation," Materials Science and Engineering: A, Vol. 527, pp. 1230-1235, 2010.
[33] R. Luri, C. Luis Pérez, D. Salcedo, I. Puertas, J. Leó, I. Pérez and J. P. Fuertes, "Evolution of damage in AA-5083 processed by equal channel angular extrusion using different die geometries," Journal of Materials Processing Technology, Vol. 211, pp. 48-56, 2011.
[34] 張致維, “超音波輔助等通道彎角擠製之有限元素分析, 碩士論文,” 國立中央大學, 2013.
[35] 廖祐懷, “超音波振動輔助多道次等通道彎角擠製之研究, 碩士論文,” 國立中央大學, 2014.
[36] 張家溢, “1070鋁合金超音波輔助等通道彎角擠製之研究, 碩士論文,” 國立中央大學, 2015.
[37] S. Jana and N. S. Ong, "Effect of punch clearance in the high-speed blanking of thick metals using an accerlator designed for a mechanical press," Journal of Mechanical Working Technology, Vol. 19, pp. 55-72, 1989.
[38] W.Kempe, & E.Kroner, "Dislocation damping of aluminum single crystals at room temperature," Zeitschrift für Metallkunde, 47, 302-304, 1956.
[39] G. E. Nevill and F. R. Brotzen, "The effect of vibration on the static yield strength of low-carbon steel," Proc. Am. Soc. Testing Materials, 57, pp. 751-755, 1957.
[40] 超音波工學理論實務. 作者:島川正憲。譯者:賴耿陽。出版社:復漢。出版日:1993/1/1。
[41] “B557M−14 Standard Test Methods for Tension Testing Wrought and Cast Aluminum and Magnesium-Alloy Products”.Annual Book of ASTM Standard.
[42] W. F. Hosford and R. M. Caddell, Metal Forming: Mechanics and Metallurgy, Prentice-Hall, Inc. A Division of Simom & Schuster Englewood Cliffs, NJ 07632, 1983.
[43] 李文, 管金 和 石煥, “氧化鋯陶瓷眼模不銹鋼抽線之理論與實驗分析,” 中國機械工程學會第二十四屆全國學術研討會論文集, pp. 3196-3200, 23、24 11 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔