(3.237.20.246) 您好!臺灣時間:2021/04/14 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐家祥
研究生(外文):Chia-Hsiang Hsu
論文名稱:藉離散元素法探討竹山槽溝中斷層引致褶皺之構造演育
論文名稱(外文):Evolution of fault-induced fold at Chushan excavation site, central Taiwan, derived from numerical analysis of PFC simulations
指導教授:黃文正黃文正引用關係
指導教授(外文):Wen-Jeng Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:應用地質研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:186
中文關鍵詞:竹山槽溝斷層引致褶皺構造演育離散元素法PFC2D數值模型
外文關鍵詞:Chushan excavationfold induced by faultstructural evolutiondistrict element methodPFC2D model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
竹山槽溝總長40公尺,深10公尺,橫跨於1999年集集地震引致的兩公尺高的地形崖上,其長軸方向的兩個主要牆面,分別以南牆與北牆稱之。在南牆上,分支斷層沿褶皺背斜軸跡截切,截切傾角為32度,且截切的最大錯距約為4.2公尺;在北牆上,分支斷層沿著褶皺向斜軸跡截切,斷層傾角為24度,且最大錯距約為3.0公尺,然而兩牆只相距十四公尺。本研究的目的即在於以離散元素法,藉由已知的地質條件,設計類似基盤斷層作用 (i.e. basement faulting or forced folding) 的模型,探討兩牆構造演育發生變化前,形成純單斜構造的地質條件,再初步探討短造成距離下兩牆面構造變化的可能原因。本研究使用以離散元素法為基礎的Particle Flow Code (PFC) 程式,將模擬對象假設由圓形剛體顆粒 (particle) 與不同的鍵結模式 (bond model)組成。由於PFC的設定參數非直接的地質材料力學參數值,須先進行PFC直剪盒及雙軸試驗模擬,以得出相對應的參數值。基於槽溝土層力學特性,以及槽溝附近的鑽井資料,竹山槽溝的模型由兩層力學特性不同的覆土層組成,上層為七公尺厚的黏土層,下層由八到十五公尺厚的礫石層組成。結果顯示,在垂直錯距為3.6公尺的下,斷層傾角必須大於24度,且黏土層的凝聚力強度必須在11~12 kPa才能形成單斜構造。本研究進一步發現,兩槽溝剖面的構造差異,可能是由於主控斷層傾角的側向變化,在兩剖面下有所不同所造成。當凝聚力為 11 kPa,下伏斷層角度為24度時,黏土層形成單斜構造,而礫石層形成楔形狀突入黏土層並截切黏土層褶皺的背斜軸處,與現今在南牆上看到的構造相同;當下伏斷層角度為32度時,黏土層同樣形成單斜構造,此時褶皺的背斜軸處受到截切,與現今槽溝中南牆的構造剖面相似。
Exposures in the Chushan trench were 40 m long and 10 m deep, excavated across a 1999 earthquake-induced escarpment of 2 m high. There were two main structure profiles, called north wall and south wall. On south wall the fold was truncated through along the axial trace of its anticline by a fault branch with a dip angle of 32 degrees and a maximum separation of 4.2 m while on the north wall the steep limb of the fold was displaced up to 3.0 m along the axial trace of its syncline by another fault branch with a dip angle of 24 degrees. The distance between two walls was only 14 m. This study intends to explore the geometerail condition of the site when the site fromed the pure monocline which is before the heterogeneous structure and explore how this heterogeneous structure might form using distinct element simulation of basement faulting. This study uses Particle Flow Code (PFC) based on discrete element method, regarding material as assembled rigid particles. The rigid particles can be connected by two types of bond models. Because the PFC parameters are different from geomaterial mechanic properties, we cannot directly use the values of geomaterial mechanic properties. In order to attain the values of PFC parameters equailvent to the mechanic properties. PFC simulations of direct shear test and bilateral test are perfomed. All our models consist of two mechanical layers, including an upper clayey layer of 7 meters thick and a lower gravelly layer of 8-15 meters thick, as revealed by the excavation, a borehole nearby and soil tests. At the vertical displacement of 3.6 meters, Our results show that the monocline fold can be simulated by a low-angle reverse faulting similar to a subsurface dominant fault with a dip angle of 24 degrees derived from the trench site at the ground surface and in a borehole in the hanging wall, and the monocline structure can only generate when the cohesion of the clay layer is 11~12 kPa. Furthermore, the different structures on the two exposures were mainly controlled by the dip-angle variation of the upper part of the subsurface dominant fault. The simulation of reverse faulting with a dip angle of 24 degrees shows a monocline forms in the clayey layer, and then a gravelly wedge starts to protrude into the clayey layer and displace it along the axial trace of the syncline similar to the structure on the north wall, and the simulation of reverse faulting with a dip angle of 32 degrees shows a monocline forms in the clayey layer, and then this monoclinal clayey layer starts to be displaced along the axial trace of the anticline similar to the structure on the southern exposure.
摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
第二章 竹山槽溝介紹 10
2.1車籠埔斷層特性與竹山槽溝介紹 10
2.2沉積單元層與力學單元層之關係 16
2.3竹山槽溝剖面構造演化 23
第三章研究方法 26
3.1 離散元素法 26
3.2力學試驗與PFC2D模擬方法 37
3.2.1 直剪盒試驗與模擬方法 47
3.2.2 雙軸試驗與模擬方法 58
第四章 PFC2D模擬力學參數結果 62
4.1 直剪盒模擬試驗 62
4.2 雙軸模擬試驗 69
第五章竹山槽溝構造模擬結果 77
5.1模型設置 78
5.2黏土層凝聚力、覆土層厚度、斷層角度變化模擬結果 82
六章討論 86
6.1黏土層凝聚力、覆土層厚度、斷層角度變化之影響 86
6.2模擬結果與現今竹山槽溝結果比較 93
第七章結論 101
參考文獻 103
附錄 108
Allmendinger, R. W., “Inverse and forward numerical modeling of trishear fault-propagation folds. ” Tectonics, 17(4): 640-656, 1998.
Chang, K. T. and Cheng, M. C., “Estimation of the shear strength of gravel deposits based on field investigated geological factors. ”, Engineering Geology, 171: 70-80, 2014
Chang, Y. Y., Lee, C. J., Huang, W. C., Huang, W. J., Lin, M. L., Hung, W. Y. and Lin, Y. H., “ Use of centrifuge experiments and discrete element analysis to model the reverse fault slip. ”, International Journal of Civil Engineering, 11(2): 79-89, 2013.
Chen, W. S., Yang, C. C. and Matsuta, N., “Characteristics of Coseismic Thrust-Related Folding from Paleoseismic Investigation Responsible for the 1999 Chi-Chi Earthquake of Central Taiwan”. Earthquake Research and Analysis - Seismology, Seismotectonic and Earthquake Geology, 2012.
Chen, W. S., Yang, C. C., Yen, I. C., Lee, L. S., Lee, K. J., Yang, H. C., Chang, H. C., Ota, Y., Lin, C. W. and Lin, W. H., “Late Holocene paleoseismicity of the southern part of the Chelungpu fault in central Taiwan: Evidence from the Chushan excavation site. ”, Bulletin of the Seismological Society of America, 97(1B): 1-13, 2007.
Cole Jr, D.A. and Lade, P.V., “Influence zones in alluvium over dip-slip faults. ”, Journal of Geotechnical Engineering, 110(5): 599-615, 1984.
Cundall, P. A., “ Rational Design of Tunnel Supports: A Computer Model for Rock Mass Behavior Using Interactive Graphics for the Input and Output of Geometrical Data”, DTIC Document, 1974.
Cundall, P. A. and Strack, O. D., “A discrete numerical model for granular assemblies”. Géotechnique, 29(1): 47-65, 1979.
Finch, E., Hardy, S. and Gawthorpe, R., “Discrete element modelling of contractional fault-propagation folding above rigid basement fault blocks. ”, Journal of Structural Geology, 25(4): 515-528, 2003.
Hardy, S. and Finch, E., “Discrete element modelling of the influence of cover strength on basement-involved fault-propagation folding. ”, Tectonophysics, 415(1): 225-238, 2006.
Huang, W. J., Chen, W. S., Lee, Y. H., Yang, C. C., Lin, M. L., Chiang, C. S., Lee, J. C. and Lu, S. T., “ Insights from heterogeneous structures of the 1999 Mw 7.6 Chi‐Chi earthquake thrust termination in and near Chushan excavation site, Central Taiwan. ”, Journal of Geophysical Research: Solid Earth, 2015.
Huang, W. J., “Deformation at the leading edge of thrust faults”, Purdue University, Thesis of PhD, 2006.
Itasca Consulting Group, Inc, Particle flow code in 2 dimensions, Version
3.0, Theory and Background. Itasca Consulting Group, Inc. Minneapolis,
Minnesota, U.S.A, 2002.
Johnson, K. M. and Johnson, A. M., “ Mechanical analysis of the geometry of forced-folds. ”, Journal of Structural Geology, 24(3): 401-410, 2002a.
Johnson, K. M. and Johnson, A. M., “Mechanical models of trishear-like folds. ”, Journal of Structural Geology, 24(2): 277-287, 2002b.
Lade, P. V., Cole Jr, D. A. and Cummings, D., “Multiple failure surfaces over dip-slip faults. ”, Journal of Geotechnical Engineering, 110(5): 616-627, 1984.
Ota, Y., Chen, Y. G. and Chen, W. S, “Review of paleoseismological and active fault studies in Taiwan in the light of the Chichi earthquake of September 21, 1999. ”, Tectonophysics, 408(1): 63-77, 2005.
Potyondy, D. and Cundall, P., “A bonded-particle model for rock.”, International journal of rock mechanics and mining sciences, 41(8): 1329-1364, 2004.
Ramsay, J. and Huber, M, Strain Analysis, The Techniques of Modern Structural Geology, vol. 1., Academic Press, London, 1983.
Wang, J. and Gutierrez, M., “Discrete element simulations of direct shear specimen scale effects.” Géotechnique, 60(5): 395-409, 2010.
Wang, Y., Yin, X., Ke, F. j., Xia, M. f. and Peng, K. Y. “Numerical simulation of rock failure and earthquake process on mesoscopic scale.”, pure and applied geophysics, 157(11-12): 1905-1928, 2000.
West, T. R., Geology applied to engineering., Waveland Press, 2010.
Yang, Y. R., Hu, J. C. and Lin, M. L.,“Evolution of coseismic fault-related folds induced by the Chi–Chi earthquake: A case study of the Wufeng site, Central Taiwan by using 2D distinct element modeling.”, Journal of Asian Earth Sciences, 79: 130-143, 2014.
Yimsirić, S. and Sogać, K., “Micromechanics-based stress-strain behaviour of soils at small strains”, Géotechnique, 50, No.5, 559-571, 2000.
Yu, G., Xu, X., Klinger, Y., Diao, G., Chen, G., Feng, X., Li, C., Zhu, A., Yuan, R. and Guo, T., “Fault-scarp features and cascading-rupture model for the Mw 7.9 Wenchuan earthquake, eastern Tibetan plateau, China.”, Bulletin of the Seismological Society of America, 100(5B): 2590-2614, 2010.
江秀旭,「互層軟岩隧道破壞模式探討」,朝陽科技大學營建工程學系,碩士論文,共155頁,2003。
林郁鈞,「以離散元素法進行具鍵結顆粒材料之直剪試驗模擬」,國立中央大學土木工程學系,碩士論文,143頁,2014。
黃文正、陳致言、劉思妤、林燕慧、林啟文、張徽正,「台灣中部大甲溪至頭汴坑溪九二一集集地震地表變形模式」,經濟部中央地質調查所特刊,12:63-87,2010。
張光宗、陳宥序、鄭敏杰,「以數值方法探討卵礫石層的力學行為」,中華水土保持學報,45(2): 95-102, 2014。
張光宗、鄭敏杰、陳樹群,「由野外調查評估卵礫石層強度性質」。中華水土保持學報,43(1):55-64,2012。
張吉佐、陳逸駿、嚴世傑、蔡宜璋,「台灣地區中北部卵礫石層工程性質及施工探討」,地工技術,(55): 35-46,1996。
張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,國立中央大學土木工程學系,博士論文,共249 頁,2013。
粘為東,「以PFC2D模擬砂土直剪實驗中之剪動帶及應用之研究,國立臺灣大學土木工程學系碩士論文」,共140頁,2010。
潘國樑,工程地質學導論,初版,科技圖書出版社,台灣,2007。
鍾春富,「逆斷層錯動引致上覆土層變形行為及對結構物影響之研究」,國立臺灣大學土木工程學系,博士論文,共271頁,2007。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔