跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:譚承恩
研究生(外文):Cheng-En Tan
論文名稱:掃描式二倍頻結構照明顯微術
論文名稱(外文):Second Harmonic Generation Scanning Structured Illumination Microscopy
指導教授:陳思妤陳思妤引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:二倍頻掃描式結構照明顯微術
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
雙光子顯微鏡因為非線性的激發過程,會有良好的光學切片能力,其中二倍頻顯微鏡在觀察肌腱組織時,可以利用肌腱組織的非中心對稱結構,無須染色就可直接觀察樣本,再加上二倍頻訊號激發的過程中無實際能階躍遷,滿足動量守恆,不會對樣本產生光破壞,有益於長時間觀察樣本。
不同於螢光,二倍頻訊號因為是屬於無能階躍遷的機制,所以不適用於以螢光訊號為基礎的超解析度顯微鏡,但可與不受限於螢光訊號的結構照明顯微術進行結合。傳統的結構照明顯微術以廣域照明架構為基礎,但對於雙光子顯微系統而言,需要極高的激發光強度才能使激發樣本上的雙光子螢光,所以須選用點掃描式的系統來增加雙光子的激發效率。本論文將結合二倍頻顯微鏡以及點掃描式結構照明以提升二倍頻顯微術的解析度。
二倍頻訊號是同調訊號,成像理論與螢光的成像理論不同,本論文基於同調訊號的成像理論建立了掃描式二倍頻結構照明顯微術的成像原理,並證實了在重建後的影像中具有較高頻的資訊,透過模擬,在1047 nm、873 nm、748.6 nm和655 nm這四種不同週期的條紋下提升的解析度分別為1.28、1.35、1.44、1.52倍;在實驗上則利用雞翅的肌腱組織成功的在1047 nm、873 nm條紋週期下於X方向取得1.29和1.38倍的解析度提升,Y方向則取得1.3和1.4倍的解析度提升。
Two-photon microscopy has an outstanding optical sectioning capability due to its nonlinear excitation process. While observing tendon tissues with its second harmonic generation microscopy, because of the non-centrosymmetric structure, tendons can be observed directly. In addition, the excited process has no energy level transitions, meeting the conservation of momentum, therefore the sample will not be damaged by the light source, making it well suited for long time observations.
Unlike fluorescents, second harmonic signals are under the conditions of no energy level transitions, thus it does not apply to the fluorescent signal-based super-resolution microscopies, however, it could be combined with structured illumination microscopy. The original structured illumination microscopy was based on a wide field setup, yet two-photon microscopy systems require extremely high excitation intensities to produce the two-photon excitation on its samples, consequently, scanning systems were chosen to overcome such issue. This paper will combine the scanning second harmonic generation microscope and structured illumination microscopy to improve the resolution.
Second harmonic signals are coherent signals, its imaging theory is different to the incoherent signal’s. In this paper, it is proven that the reconstruction image has a higher frequency information based on the Second Harmonic Generation Scanning Structured Illumination Microscopy theory. In simulation, under four different periods: 1047 nm, 873 nm, 748.6 nm and 655 nm, the resolution is enhanced by 1.28, 1.35, 1.44, and 1.52 times respectively; in experiments, by using chicken wings tendon as samples, resolution were improved by 1.29 and 1.38 times; and in the Y direction, 1.3 and 1.4 times the resolution improvement were achieved.

摘要 i
Abstract iii
目錄 v
圖索引 vii
第一章 緒論 1
1.1.1 光學顯微鏡的繞射極限 1
1.1.2 二倍頻顯微鏡 3
1.1.3 結構照明顯微術的發展 4
1.2 研究目的與動機 8
第二章 基本理論 10
2.1 結構照明顯微術 10
2.2 二倍頻(SHG)發光原理 15
2.3 同調光與非同調光的成像公式 17
2.4掃描式二倍頻結構照明顯微術 19
第三章 實驗系統架構 26
3.1 實驗架構 26
3.2 實驗架構參數 29
3.3 實驗系統模擬 31
3.3.1 PSF之模擬 31
3.3.2 USAF 1951 Resolution Target 模擬 34
3.3.2 點訊號源之模擬 36
第四章 實驗結果 38
4.1 樣本製作 38
4.2 影像還原流程 39
第五章 結論 50
參考文獻 52
中英文名詞對照表 55

[1]. Lipson and Tannhauser, “ Optical Physics,” United Kingdom: Cambridge, 340(1998).
[2]. Olympus, “http://www.olympusmicro.com/primer/anatomy/numaperture.html”
[3]. G Dolino, “Direct observation of ferroelectric domains in TGS with second‐harmonic light,” Applied. Physics Letters 22, 123-124(1973).
[4]. R. Hellwarth and P. Christensen, “Nonlinear optical microscopy examination of structure in polycrysyalline ZnSe,” Optics Communication 12, 318-322(1974).
[5]. J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Optical and Quantum Electronics, 435-439(1978).
[6]. I. Freund, M. Deutsch and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophysical journal 50, 693-712(1986).
[7]. O Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophysical Journal 65, 254-257(1993).
[8]. G. Peleg, A. Lewis, M. Linial and L. M. Loew, “Non-liner optical measurement of membrane potential around single molecules at selected,” Proceedings of the National Academy of Sciences 96, 6700-6704(1999).
[9]. Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu and R. R. Alfano, “Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pluses,” Applied Optics 35, 6810-6813(1996).
[10]. J. Paul, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophysical Journal 81, 493-508(2002).
[11]. S. W. Hell and J. Wichomann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission depletion fluorescence microscopy,” Optics letters 19, 780-782(1994).
[12]. T. A. Klar and S. W. Hell, “Sub-diffraction resolution in far-field fluorescence microscopy,” Optics letters 24, 954-956(1999.).
[13]. E. Betzig, “Proposed method for molecular optical imaging,” Optics letters 20, 237-239(1995).
[14]. M. J. Rust, M. Bates and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793-796(2006).
[15]. M. Neil, R. Juskaitis and T. Wilson, “Method of obtaining optical sectioning by structured light in convention microscope,” Optics letters 22, 1905-1907(1997).
[16]. M. G. L. Gustaffsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” Journal of Microscopy 198, 82-87(2000).
[17]. R. R. Heintzmann and T. M. Jovin, “Saturated patterned excitation microscopy - a concept for optical resolution improvement,” Journal of Optical Society of America A 19, 1599-1099(2002).
[18]. M. G .L. Gustaffsson, L. Shao, P. M. Carlton, C. Wang, I. N. Golubovskaya and W .Z. Cande, “Three-dimensional resolution doubling in weild-deild fluorescence microscopy by structure illumination,” Biophysical journal 94, 4957-4970(2008).
[19]. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao and J. Wittbrodt, “Fast, high-contract imaging of animal development with scanned light sheet-based structure- illumination microscopy,” Nature methods 7, 637-642(2010).
[20]. L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustaffsson, “I5S: Wide-field Light Microscopy with 100-nm-Scale Resolution in Three Dimensions,” Biophysical Journal 94, 4971-4983(2008).
[21]. B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Optics Express 17, 14710-14721(2009).
[22]. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto and M. G. L. Gustafsson, “Super- resolution video microscopy of live cells by structured illumination,” Nature Methods 6, 339-342(2009).
[23]. Takashi Fukano and Atsushi Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Applied optics 42, 4119-4124(2003).
[24]. D. Dan M. Lei, B. Yao, W. Wang, M. Winterhalder and A. Zumbusch, “DMD-based LED-illumination Super-resolution and optical secting microscopy,” Scientific reports 3, (2013).
[25]. B. Boruah and M. Neil, “Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam,” Review of Scientific Instruments 80, 13705(2009).
[26]. Chia-Hua Yeh and Szu-Yu Chen, “Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination,” Applied Optics 54, 2309-2317(2015).
[27]. R. Heintzmann, T. M. Jovin and C. Cremer, “Saturated patterned excitation-a concept for optical resolution,” Journal of the Optical Society of America A 19, 1599-1609(2002).
[28]. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
[29]. A. I. I. T-20 UASF 1951 Chart Standard Layout Product Specification Available, “https://www.appliedimage.com/files/8sYYLo/USAF%201951%20Test%20Target%20T-20_v1-04.pdf”
[30]. KriegerScience, “ttps://kriegerscience.wordpress.com/2010/10/24/how-to-dissect-a-chicken-wing”

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top