(100.26.179.251) 您好!臺灣時間:2021/04/12 21:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂俊諺
研究生(外文):ChunYen Lu
論文名稱:高效率與高演色性之棋盤式雙螢光粉封裝研究
論文名稱(外文):Study of High-Efficiency Packaging of Double-Phosphor Chessboard Structure with High Color Rendering Index
指導教授:孫慶成孫慶成引用關係楊宗勳楊宗勳引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:120
中文關鍵詞:螢光粉LED封裝高效率高演色性
相關次數:
  • 被引用被引用:1
  • 點閱點閱:53
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文致力於提升LED之封裝效率與演色性,首先使用兩種不同粒徑之黃色螢光粉作效率上的探討,並應用孫慶成教授領導之固態照明實驗室中螢光粉光學模型,建立兩種不同粒徑之螢光粉模型,可得到大粒徑之螢光粉封裝效率表現比小粒徑之螢光粉好。並使用大粒徑之黃色螢光粉模型模擬出棋盤式LED封裝,藉此提生白光LED之封裝效率,並分析棋盤式LED封裝之分佈影響。然而考慮到演色性之問題,改良棋盤式LED噴塗之封裝方式,使用紅色螢光粉與綠色螢光粉加入探討,藉由模擬優化以及分析,製作出高效率與高演色性之LED。
This thesis aims to improve the packaging efficiency and the CRI of LEDs. In the beginning, we studied the efficiency of two YAG phosphors in different radiuses. By applying professor Sun phosphor optical model to generate two models for both phosphors, it can be concluded that the packing efficiency of the wider radius phosphor was better than the narrow one. Additionally, the yellow phosphor optical model of the wider phosphor was used to simulate a chessboard structure LED package. In order to improve the packaging efficiency of the white light LED and to analyze the influence caused by the distribution of the chessboard structure LED package. Yet, with consideration of its CRI, by improving the packaging method of the chessboard structure LED, adding both red and green phosphors into the study, and applying with addition simulation optimization and analyzation, a high packaging efficiency and high CRI LED can be manufactured.
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 IX
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 LED 發展 2
1.3 研究動機與目的 4
1.4 論文大綱 5
第二章 基本原理 6
2.1 引言 6
2.2 LED發光原理 6
2.3 螢光粉發光原理 8
2.4 色彩學 11
2.4.1 RGB 色度系統 12
2.4.2 CIE XYZ 13
2.4.3 相關色溫 15
2.4.4 演色性 16
第三章 螢光粉低濃度至高濃度光學模型 19
3.1 引言 19
3.2 散射模型 20
3.2.1 螢光粉參數 20
3.2.2 螢光粉片製作與散射強度量測 23
3.2.3 螢光粉等效折射率與等效粒徑 28
3.3 螢光粉之等效吸收係數與等效轉換效率 30
3.3.1 螢光片積分球實驗量測與光源設計 30
3.3.2 頻譜切割與能量計算 33
3.3.3 等效吸收係數 36
3.3.4 等效轉換效率 38
3.4 光學模型驗證 40
3.4.1 實驗製作 41
3.4.2 封裝效率 41
3.4.3 實驗與模擬對照 43
3.5 光學模型探討與結論 45
第四章 棋盤式螢光粉封裝 49
4.1 棋盤式封裝之分析 50
4.1.1 碗杯之能量影響 50
4.1.2 棋盤式封裝設計 51
4.1.3 正向能量與背向能量 55
4.1.4 玻璃空隙與棋盤式封裝 57
4.1.5 棋盤式封裝之空間色偏 58
4.2 綠色螢光粉與紅色螢光粉之高濃度模型 59
4.2.1 螢光粉散射建立 59
4.2.2 吸收係數與轉換效率 65
4.2.3 封裝驗證 72
4.3 雙粉棋盤式封裝 75
4.3.1 螢光粉選擇與參數 75
4.3.2 光學模擬建立與棋盤式封裝實驗 76
4.3.3 矽膠透鏡的棋盤式封裝 79
4.4 棋盤式封裝之討論與結論 81
第五章 結論 87
參考文獻 89
中英文對照表 95


[1] M. Josephson, Edison: a biography (McGraw-Hill, New York, 1959).
[2] A. Zukauskas, M. Shur, and R. Gaska, Introduction to solid-state lighting (J. Wiley & Sons, New York, 2002).
[3] M. Yamada and D. Chwastyk, Adoption of Light-Emitting Diodes in Common Lighting Applications (U.S. Department of Energy, Washington, D.C., 2013).
[4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[5] T. Moriguchi, Y. Noguchi, K. Sakano, and Y. Shimizu, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[6] H. J. Round, “A note on Carborundum,” Electrical Word 49, 309 (1907).
[7] N. J. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[8] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[9] LEDinside, http://www.ledinside.com.tw/node/9288/.
[10] J. Y. Tsao, An OIDA Technology Roadmap Update 2002 (Nov. 2002), http://www.netl.doe.gov/ssl/workshop/Report%20led%20November%202002a_1.pdf.
[11] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).
[12] T. F. McNulty, D. D. Doxsee, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[13] J. K. Sheu, S. J. Chang, C. Kuo, Y. K. Su, L. Wu, Y. Lin, W. Lai, J. Tsai, G. C. Chi, and R. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
[14] D. A. Neamen, Microelectronics Circuit Analysis and Design (McGraw-Hill, New York, 2007).
[15] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).
[16] E. F. Schubert, Light Emitting Diode (Cambridge University Press, Cambridge, 2003).
[17] 陳隆建,發光二極體之原理與製程,全華圖書股份有限公司,台北縣,中華民國一百年。
[18] S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC Press, Boca Raton, 1999).
[19] 劉如熹、劉宇恒,發光二極體用氧氮化螢光粉介紹,全華科技圖書股份有限公司,台北市,中華民國九十五年。
[20] 大田登,色彩工程學理論與應用,全華圖書股份有限公司,台北縣,中華民國九十七年。
[21] A. Jaboski, “Efficiency of anti-Stokes fluorescence in dyes,” Nature 131, 839-840 (1933).
[22] D. B. Judd and G. Wyszecki, Color in business, science and industry (Wiley-Interscience, New York, 1975).
[23] T. Smith and J. Guild, “The CIE colorimetric standards and their use,” Trans. Opt. Soc. 33, 73 (1931).
[24] The Colour & Vision Resrarch Laboratory, http://www.cvrl.org/.
[25] G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (John Wiley & Sons, New York, 2000).
[26] G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (John Wiley and Sons, nc.,Danvers, 1982).
[27] International Commission on Illumination, CIE 15: Technical Report: Colorimetry, 3rd ed. (CIE, Vienna, 2004).
[28] Planck’s law, https://en.wikipedia.org/wiki/Planck%27s_law.
[29] International Commission on Illumination, CIE 13.3: Technical Report: Method of Measuring and Specifying Colour Rendering Properties of Light Sources (CIE, Vienna, 1995).
[30] 大田登,色彩工程學理論與應用,全華圖書股份有限公司,台北縣,中華民國九十七年。
[31] 何信穎,白光 LED 之 YAG 螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十六年。
[32] 紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。
[33] 陳靜儀,矽酸鹽螢光粉用於白光 LED 之光學模型,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
[34] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
[35] N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Eifficacy of Phosphor-Converted White LES,” IEEE, 0733-8724 (2009)
[36] S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
[37] Z. Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[38] China Glaze Group, http://www.china-glaze.com.tw/.
[39] 陳靜儀,白光 LED 之螢光粉多功能模型之研究,國立中央大學光電科學與工程學系博士論文,中華民國一百零一年。
[40] N. T. Tran and F. G. Shi, “Simulation and experimental studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes,” J. Lightwave Techno. 26, 3556-3559 (2008).
[41] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Techno. Lett. 23, 552-554 (2011).
[42] T. H. Yang, C. Y. Chen, Y. Y. Chang, B. Glorieux, Y. N. Peng, H. X. Chen, T. Y. Chung, T. X. Lee, and C. C. Sun, “Precise simulation of spectrum for green emitting phosphors pumped by a blue LED die,” IEEE Photon. J. 6, 8400510 (2014).
[43] R. Hua, X. Luo, H. Fenga, and S. Liu, “Effect of phosphor settling on the optical performance of phosphor-converted white light-emitting diode,” J. Lumines. 132, 1252-1256 (2012).
[44] J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988).
[45] Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).
[46] I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
[47] P. Chýlek, “Light scattering by small particles in an absorbing medium,” J. Opt. Soc. Am. 67, 561-563 (1977).
[48] 彭逸寧,雙色分層螢光粉光學模型之建立與分析,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
[49] Cree, Inc., http://www.cree.com/led-chips-and-materials/chips/.
[50] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[51] C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I. M. Chan, and J. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
[52] 林欣瑩,螢光粉塗佈圖形對白光 LED 封裝效率之影響研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百零三年。
[53] 陳鶴祥,分層雙色白光LED封裝效率及色彩表現之研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百零二年。
[54] 張育譽,雙螢光粉光學模型之研究及其演色性之評估,國立中央大學光電科學與工程學系博士論文,中華民國一百零四年。
[55] C. C. Sun, C. Y. Shen, J. H. Chang, T. H. Yang, W. S. Ji, Y. S. Jeng, and H. M. Wu “Linear calculation model for prediction of color rendering index performance associated with correlated color temperature of white light-emitting diodes with two phosphors,” Opt. Eng 51, 054003 (2012).

電子全文 電子全文(網際網路公開日期:20210531)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔