(3.230.143.40) 您好!臺灣時間:2021/04/19 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林楚健
研究生(外文):Chu-Jian Lin
論文名稱:磁控濺鍍法製備砷化鎵薄膜之研究
論文名稱(外文):Investigation of Gallium Arsenide Thin Films deposited by RF Sputtering
指導教授:陳昇暉曹昭陽曹昭陽引用關係
指導教授(外文):Sheng-Hui ChenChao-Yang Tsao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:濺鍍砷化鎵薄膜
外文關鍵詞:sputterGallium ArsenideFilm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
III-V族高效率太陽能電池為目前發展的主流之一,克服成本、大面積化、高效率為努力方向,本實驗主要以濺鍍磊晶砷化鎵薄膜於鍺晶圓上降低其製程成本,第一部分中藉由調整濺鍍功率由低功率至高功率下與基板溫度由室溫與加熱至高溫下對於砷化鎵薄膜製程影響;第二部分則是將砷化鎵薄膜放入真空爐管系統中進行熱退火製程改善其薄膜品質,並探討改變熱退火溫度對其影響。
實驗中最後成製程結晶砷化鎵薄膜,藉由熱退火優化使其薄膜中非晶比例大幅下降,本實驗中討論將使用到XRD(X射線繞射光譜)、Raman(拉曼光譜)討論薄膜磊晶的結果,AFM(原子力顯微鏡)瞭解濺鍍磊晶薄膜表面粗糙度品質、光譜儀討論光學特性與TEM(穿透式電子顯微鏡)來解釋薄膜結晶結果。

In this study the Gallium Arsenide thin films deposited on the Germanium wafer by using sputtering method was discussed. The advantage of sputtering method was its lower costs and nontoxic process. Firstly, the properties of the Gallium Arsenide films were analyzed with varied RF power and the substrate temperature processed .Then , the annealing were developed to optimize the Gallium Arsenide film quality . XRD , Raman , AFM and TEM to analyze the results of grown the Gallium Arsenide thin films to achieve a good crystallize GaAs film .
目錄
摘要...............................................................................................................................vi
Abstract........................................................................................................................vii
致謝............................................................................................................................ viii
目錄...............................................................................................................................ix
圖目錄..........................................................................................................................xii
表目錄.........................................................................................................................xiv
第一章 緒論..................................................................................................................1
1-1 前言................................................................................................................1
1-2 研究動機與目的 ............................................................................................4
1-3 論文架構........................................................................................................6
第二章 文獻回顧..........................................................................................................7
2-1 砷化鎵材料特性與應用................................................................................7
2-2 常見砷化鎵薄膜製程與比較.......................................................................10
2-3 相關砷化鎵磊晶薄膜文獻...........................................................................11
2-4 實驗流程簡介 ...............................................................................................14
第三章 實驗設備 & 分析工具 ................................................................................15
3-1 濺鍍設備 (RF Sputtering)..........................................................................15
3-2 X 射線繞射儀 ( X-Ray Diffraction , XRD )..............................................18
3-3 二維 X 光射線繞射儀 (2D-XRD)...............................................................20
3-4 拉曼光譜儀 (Raman scattering) ................................................................21
3-5 熱退火製程...................................................................................................23
x
3-6 砷化鎵濺鍍磊晶流程..................................................................................24
第四章 砷化鎵薄膜濺鍍磊晶與分析........................................................................25
4-1 改變濺鍍功率 ...............................................................................................25
4-1-1 Raman 量測結果與分析 ..........................................................................26
4-1-2 XRD 量測結果與討論 ..............................................................................30
4-1-3 2D-XRD 量測結果與討論........................................................................31
4-1-4 表面粗糙度結果與分析............................................................................35
4-1-5 UV 反射光譜分析與討論.........................................................................37
4-1-6 TEM 量測結果與分析..............................................................................39
4-1-7 改變濺鍍功率結果討論...........................................................................40
4-2 改變基板溫度對砷化鎵磊晶的影響..........................................................42
4-2-1 Raman 量測結果與分析 ..........................................................................43
4-2-2 2D-XRD 量測與分析................................................................................45
4-2-3 AFM 量測結果與分析..............................................................................49
4-2-4 UV 反射功率分析與討論.........................................................................51
4-2-5 改變基板溫度結論....................................................................................52
第五章 熱退火優化砷化鎵薄膜................................................................................54
5-1 熱退火實驗流程 ..........................................................................................54
5-2 不同溫度熱退火對薄膜影響......................................................................55
5-2-1 Raman 量測結果與分析 ..........................................................................56
5-2-2 2D-XRD 量測結果與分析........................................................................59
5-2-3 AFM 量測結果與分析..............................................................................63
5-2-4 UV 反射光譜量測與分析.........................................................................65
5-2-5 改變熱退火溫度結果與討論...................................................................67
第六章 結論與未來工作............................................................................................69
xi
6-1 結論..............................................................................................................69
6-2 未來工作......................................................................................................70
參考文獻......................................................................................................................71
1. 楊昌中,“ 能源危機與永續發展 ”,工業技術研究院 (2012)
2. 台灣因應氣候變化綱要公約資訊網: http://www.tri.org.tw/unfccc/main05.htm
3. 楊德仁著,顏怡雯校, “太陽能電池材料 Solar Cell Materials “,五南圖書版公司
4. Martin A. Green , “The Path to 25% Silicon Solar Cell Efficiency : History of Silicon Cell Evolution “ , Prog Photovolt : Res Appl . (2009) , P183-189
5. D. M. Chapin , C. Fuller and G. Pearson , ” A new silicon p‐n junction photocell for converting solar radiation into electrical power ”, Journal of Applied Physics, (1954) , P676-677.
6. J. Zhao, A. Wang and Martin A. Green, “ 24· 5% Efficiency silicon PERT cells on MCZ substrates and 24· 7% efficiency PERL cells on FZ substrates ” Progress in Photovoltaics: Research and Applications, (1999) P. 471-474.
7. K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi and Y. Kuwano. “ More than 16% solar cells with a new HIT (doped a-Si/nondoped a-Si/crystalline Si) structure ” , Conference Record of the Twenty Second IEEE. (1991)
8. Zhao J, Wang A, Green MA, Ferrazza F. “ Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells ” Applied Physics Letters (1998) , P1991–1993.
9. Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S, “ Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. ” , IEEE Journal of Photovoltaics (2014) P 1433–1435

10. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier and M. Powalla, “Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%”., physica status solidi (RRL)-Rapid Research Letters, 2014. 9999.
11. NREL太陽能效率圖: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
12. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo and S.I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange”. Science, 2015: p. aaa9272.
13. Kayes BM, Nie H, Twist R, Spruytte SG, Reinhardt F, Kizilyalli IC, “ Higashi GS. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination” , IEEE Photovoltaic Specialists Conference (2011)
14. SPress Release, Sharp Corporation, 31 May 2012 (accessed at http://sharp-world.com/corporate/news/ 120531.html on 5 June 2013).
15. Press release , Fraunhofer Institute for Solar Energy Systems , 1 December 2014 (accessed at. http://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2014/new-world-record-for-solar-cell-efficiency-at-46-percent on 7 December 2014).
16. NREL Press Release NR-4514, 16 December 2014.
17. K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures.” . Energies, 2009. 2(3): p. 504-530
18. http://userweb.eng.gla.ac.uk/douglas.paul/SiGe/lattice.html
19. 陳冠翔 , “在矽基板上成長單晶鍺薄膜與矽鍺薄膜之研究” , 國立中央大學碩士論文 (2014)
20. E.Bertolucci , M.G. Bisogni , U. Bottigli , A. Cola , M.E Fantacci , V. Rosso , A. Stefanini , L. Vasanelli , “ X-ray imaging using a pixel GaAs detector ” , Nuclear Instruments and Methods in Physics Research A 362 (1995) 547-550
21. Walter F. Kosonocky , “ GaAs Laser Amplifiers “ , IEEE Journal of quantum electrooxics (1968)
22. S. I. Tsintzos , P. G. Savvidis, G. Deligeorgis , Z. Hatzopoulos , and N. T. Pelekanos , “ Room temperature GaAs excition-polariton light emitting diode“ , Applied Physics Letters 94 , 0711
23. 楊賜麟 ,半導體物理與元件(第四版) ,滄海書局,(2012)
24. 施敏,李明逵著,曾俊元譯,半導體元件物理與製作技術(第三版),交通大學出版社 (2013)
25. 伍秀菁、汪若文、林美吟 編輯,”真空技術與應用”,財團法人國家實驗研究院儀器科技研究中心新竹市科學工業園區研發六路20號 出版
26. Masahiro AKIYAMA , Yoshihiro KAWARADA and Katsuzo KAMINSHI , “Growth of Single Domain GaAs Layer on (100)-Oriented Si Substrate by MOCVD”, Applied Physics VOL.23,NO11,(1984),pp. L843-L845
27. A. GIORDANA , O.J.GLEMBOCKI, E.R GLASER, D.K GASKILL, C.S. KYONO , M.E. TWIGG , M. FATEMI , and B. TADAYON , “ Characterization of Crystalline Low Temperature GaAs Layers Annealed from an Amorphous Phase “ , Journal of Electronic Materials , Vol.22 ,No. 12. 1993
28. Goutam Kumar Dalapati , Sandipan Chakraborty , Chandreswar Mahata , Maruf Amin Bhuiyan , Jianrong Dong , Aneesa Iskander , Saied Masudy-panah ,Sanghamitra Dinda , Ren Bin Yang , Taeyoon Lee , Dongzhi Chi , Ching Kean Chia , “Atomic layer deposited Al2O3 on high quality p-type epitaxial-GaAs/Ge for advanced III-V/Ge based device application “ , Materials Letters 156 (2015) 105-108
29. Mitsunori Yokoyama , Yusuke Matsukura , Hitoshi Tanaka , “Selective epitaxial growth of GaAs using dimethylgalliumchloride by multi-wafer low-pressure metal organic vapor phase epitaxy (LP-MOVPE)” , Journal of Crystal Growth 203 (1999) 464-472
30. Mantu Kumar Hudait , S.B. Krupanidhi , “ Atomic force microscopic study of surface morphology in Si-doped epi-GaAs on Ge substrates : effect of off-orientation ” , Materials Research Bulletin 35 (2000) 909-919
31. Mitsuru Imaizumi , Mitsuhiro Adachi , Yasunori Fujii , Yasuhiko Hayashi , Tetsuo Soga , Takashi Jimbo , Masayoshi Umeno , “ Low-temperature growth of GaAs polycrstalline films on glass substrates for space solar cell application “ , Journal of Crsystal Growth 221 (2000) P 688-692
32. 中央大學科四館XRD : http://in.ncu.edu.tw/ncu7450/pic/XRD.htm
33. 中央大學光電中心2D-XRD : http://in.ncu.edu.tw/ncu7020/Instrument/
34. 拉曼機制散射圖http://www.teo.com.tw/brand.asp?lv=0&id=70
35. Annealing, Available from: https://en.wikipedia.org/wiki/Annealing_(metallurgy).
36. Terri Deegan , Greg Hughes , “ An X-ray photoelectron spectroscopy study of the HF etching of native oxides on Ge (111) and Ge(100) surface” , Applied Surface Science 123/124 (1998) 66-70
37. I.D.Desnica , M. Ivanda , M. Kranjcec , R. Murri , N.Pinto , “Raman study of gallium arsenide thin films” , Journal of Non-Crytalline Solids 170 (1994) 263-269
38. S.K Mohants , R.K. Soni , N. Gosvami , S. Tripathy , D. Kanjilal , “Morphological and micro-Raman investigations on Ar+-ion irradiated nanostrutured GaAs surface “ , Applied Surface Science 253 (2007) 4531-4536
39. D.E.Aspnes and A.A.Studna , “ Dielectric functions and optical parameters of Si , Ge , GaP , GaAs , GaSb , InP , InAs , and InSb from 1.5 to 6.0 eV “ , The American Physical Society (1983)
40. 李正中, “薄膜光學與鍍膜技術(第七版)”,藝軒圖書出版社 (2012)
41. Akira Yamaguchi , Masahiro Shibata , “ Transmission electron microscopy specimen preparation technique using focued ion beam fabrication : Application to GaAs metal-semiconductor field effect transistors “ , Amearican Vacuum Society (1993)


42. Chao-Yang Tsao , Patrick Campbell , Dengyusn Song , Martin A. Green , “ Influence of hydrogen on structural and optical porperties of low temperature polycrystalline Ge film deposited by RF magnetron sputtering “ , Journal of Crystal Growth 312 (2010) 2647-2655

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔