(3.238.206.122) 您好!臺灣時間:2021/04/21 09:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙昱豪
研究生(外文):Yu-Hao Chao
論文名稱:準直鏡、對稱式聚光鏡與非對稱式聚光鏡均光系統在數位微型反射鏡元件上之效率比較與分析
指導教授:孫文信
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:109
中文關鍵詞:投影機準直鏡聚光鏡
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
準直鏡的均光系統架構,由三顆RGB LED、三顆準直鏡、兩片色彩分光鏡、透鏡陣列、延續透鏡與DMD所組成。當光源經由一顆或三顆LED發光,經過準直鏡出射後為準直,會經過兩片色彩分光鏡後會讓三種不同LED光源入射在透鏡陣列入光面上,再由透鏡陣列出光面出射至延續透鏡後投射在DMD上。而準直鏡均光系統光展量計算,效率為65.54%。設鏡面表面穿透率為100%,模擬R LED光源入射至DMD效率為49.71%、平均差為4.29%;G LED效率為41.10%、平均差為4.71%;B LED效率52.72%、平均差為4.41%。
對稱式聚光鏡均光系統,以對稱式聚光鏡取代準直鏡外,其他光學元件與準直鏡均光系統相同之另一種設計,可使LED的光源聚焦在透鏡陣列入光面上。而對稱式聚光鏡均光系統光展量計算,效率為50.81%。模擬R LED光源入射至DMD效率為47.16%、平均差為1.54%;G LED效率為39.95%、平均差為2.98%;B LED效率47.68%、平均差為2.25%。
由於對稱式聚光鏡在像方光展量比透鏡陣列入光面光展量小,造成光量損失26.09%,我們提出非對稱式聚光鏡均光系統,使非對稱式聚光鏡在像方光展量與透鏡陣列入光面光展量相同,使光展量效率提高為68.74%。R LED光源入射至DMD效率為63.52%、平均差為2.97%;G LED效率為53.38%、平均差為2.98%;B LED效率56.24%、平均差為3.43%。

The uniformity system of collimator is composed of three LED, three collimator lens, two dichroic filter, a lens array, a relay lens and DMD. When LEDs light sources are through collimator lens, the rays can be as parallel rays. Three LED light sources are incident on entrance surface of lens array after the parallel rays are through two dichroic mirrors. And then use of a relay lens made the rays projected on DMD from exit surface of lens array. The uniformity system of collimator is calculated Étendue which the efficiency is 65.54%. When transmittance of mirror surface is 100%, the efficiency of red LED is 49.71% on DMD and the average deviation is 4.29%. The efficiency of green LED is 41.10% on DMD and the average deviation is 4.71%. The efficiency of blue LED is 52.72% on DMD and the average deviation is 4.41%.
The uniformity system of condenser is that the condenser lens is replaced collimator lens. The optical elements of symmetric condenser system and the optical elements of collimator system are the same. The uniformity system of symmetric condenser is calculated Étendue which the efficiency is 50.81%. When transmittance of mirror surface is 100%, the efficiency of red LED is 47.16% on DMD and the average deviation is 1.54%. The efficiency of green LED is 39.95% on DMD and the average deviation is 2.98%. The efficiency of blue LED is 47.68% on DMD and the average deviation is 2.25%.
Because the image plane of the symmetric condenser is less Étendue than the entrance surface of lens array, the efficiency of Étendue is loss 26.09%. We propose the uniformity system of asymmetric condenser.Therefore, the image plane of asymmetric condenser and the entrance surface of lens array are the same Étendue. The uniformity system of asymmetric condenser is calculated Étendue which the efficiency is 68.74%. When transmittance of mirror surface is 100%, the efficiency of red LED is 63.52% on DMD and the average deviation is 2.97%. The efficiency of green LED is 53.38% on DMD and the average deviation is 2.98%. The efficiency of blue LED is 56.24% on DMD and the average deviation is 3.43%.

摘 要 I
Abstract II
誌 謝 IV
目 錄 V
圖 目 錄 IX
表 目 錄 XIII
第一章 緒論 1
1-1 文獻回顧 1
1-2 研究動機 4
1-3論文架構 5
第二章 光學原理介紹 7
2-1光展量 (Étendue)定義與計算 7
2-2立體角型態與光展量(Étendue)的關係 9
2-2-1 圓形立體角之光展量(Étendue)計算 9
2-2-2 橢圓形立體角之光展量(Étendue)計算 11
2-2-3 矩形立體角之光展量(Étendue)計算 12
2-3 拉式不變量 13
2-4 均勻度規範 15
第三章 準直鏡均光系統與分析 17
3-1 LED規格 17
3-1-1 LED參數 17
3-1-2 LED光譜 17
3-1-3 LED配光曲線 17
3-2 DMD規格 18
3-3 LED光通量輸出計算 19
3-4 準直鏡初階設計 20
3-4-1 準直鏡之照明特性 23
3-5色彩分光鏡( Dichroic filter) 24
3-5-1 近軸主光線入射在色彩分光鏡位置位移 25
3-5-2 色彩分光鏡對光源的影響 27
3-6透鏡陣列原理 28
3-6-1 單格透鏡陣列入光面初階設計 29
3-6-2 單格透鏡陣列出光面初階設計 30
3-6-3 單格透鏡陣列設計 31
3-6-4 單格透鏡陣列直徑大小、透鏡垂直方向與水平方向的NA值與出射角度 32
3-6-5 透鏡陣列初階設計 34
3-6-6 透鏡陣列出光面之照明特性 35
3-7 延續透鏡設計 35
3-7-1 延續透鏡水平方向初階規格 36
3-7-2 延續透鏡垂直方向初階規格 37
3-8 光展量計算 38
3-8-1 LED的光展量計算 38
3-8-2 準直鏡物方的光展量計算 38
3-8-3 透鏡陣列入光面的光展量計算 39
3-8-4 透鏡陣列出光面的光展量計算 39
3-8-5 DMD照明區域的光展量計算 40
3-8-6 DMD有效區域的光展量計算 40
3-8-7 準直鏡均光系統光展量總覽與幾何效率分析 41
3-9 準直鏡均光系統模擬分析 41
3-9-1 準直鏡均光系統Layout 41
3-9-2 準直鏡均光系統模擬效率 43
3-9-3 準直鏡均光系統均勻度分析 44



第四章 對稱式聚光鏡均光系統與分析 48
4-1 對稱式聚光鏡初階設計 48
4-1-1 對稱式聚光鏡之照明特性 51
4-2 透鏡陣列設計 52
4-2-1 透鏡陣列之出射角度 53
4-3 延續透鏡設計 54
4-3-1 延續透鏡水平方向初階規格 54
4-3-2 延續透鏡垂直方向初階規格 55
4-4 光展量計算 56
4-4-1 LED的光展量計算 56
4-4-2 對稱式聚光鏡物方的光展量計算 56
4-4-3 對稱式聚光鏡像方的光展量計算 57
4-4-4 透鏡陣列入光面的光展量計算 57
4-4-5 透鏡陣列出光面的光展量計算 58
4-4-6 DMD照明區域的光展量計算 58
4-4-7 DMD有效區域的光展量計算 59
4-4-8 對稱式聚光鏡均光系統光展量總覽與幾何效率分析 60
4-5 對稱式聚光鏡均光系統模擬分析 60
4-5-1 對稱式聚光鏡均光系統Layout 60
4-5-2 對稱式聚光鏡均光系統模擬效率 62
4-5-3 對稱式聚光鏡均光系統均勻度分析 62
第五章 非對稱式聚光鏡均光系統與分析 67
5-1 非對稱式聚光鏡初階設計 67
5-1-1 非對稱式聚光鏡系統之照明特性 71
5-2 透鏡陣列設計 71
5-3 延續透鏡設計 72
5-3-1 延續透鏡垂直方向初階規格 72
5-3-2 延續透鏡垂直方向初階規格 74
5-4 光展量計算 75
5-4-1 LED的光展量計算 75
5-4-2 非對稱式聚光鏡物方的光展量計算 75
5-4-3 非對稱式聚光鏡像方的光展量計算 75
5-4-4 透鏡陣列出光面的光展量計算 76
5-4-5 DMD照明區域的光展量計算 77
5-4-6 DMD有效區域的光展量計算 77
5-4-7 非對稱式均光系統光展量總覽與幾何效率分析 78
5-5 非對稱式聚光鏡均光系統模擬分析 78
5-5-1 非對稱式聚光鏡均光系統Layout 78
5-5-2 聚光鏡均光系統模擬效率 80
5-5-3 非對稱式聚光鏡均光系統均勻度分析 81
第六章 結論與未來展望 85
6-1 結論 85
6-2 未來展望 87
參 考 文 獻 88


[1] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
[2] G. Harbers, M. Keuper, and S. Paolini, “Performance of high power LED illuminators in color sequential projection displays,”in Proceedings of Internal Display Workshop (IDW 2003).
[3] 田志豪,趙中興,顯示器原理與技術,全華出版,台北市,P.9-10,民國八十六年。
[4] 陳連春,彩色液晶顯示器原理與技術,建興,P23,民國八十一年。
[5] B. V. Giel, Y. Meuret, L. Bogaert, H. Murat, H. D. Smet, and H. Thienpont, “LED projector with two liquid crystal on silicon light valves and a fly’s eye integrator,” Displays 29, 464-470 (2008).
[6] P. F. V. KESSEL, L. J. HORNBECK, R. E. MEIER, and M. R. DOUGLASS, “A MEMS-Based Projection Display,”Proc. IEEE 86, 1687-1704(1998)
[7] M. P. Krijn, B. A. Salters, and O. H. Willemsen, “LED-basedmini projector,” Proc. SPIE 6196, 619602 (2006).
[8] E. Geissler, “Meeting the challenges of developing LED-based projection display,” Proc. SPIE 6196, 619601 (2006).
[9] G. Benedix and E. Piehler, “Projection objective,” U.S. patent 6,844,984 (3 January 2005).
[10] J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15, 10483-10491 (2007).
[11] C. M. Chang and H. P. D. Shieh, “Design of illumination and projection optics for projectors with single digital micromirror devices,” Appl. Opt. 39, 3202-3208 (2000).
[12] D. Rui, Z. Lin, K. Qi, W. Chen, “Optical design in illumination system of digital light processing projector using laser and gradient-index lens,” Opt. Eng. 51, 013004 (2012).
[13] S. C. Shin, Y. Jung, T. J. Ahn, S. S. Jeong, S. G. Lee, and K. Y. Choi, “The Compact Systems Design Based on DMD and the Straight Line 2-Channel LED for a Mobile Embedded Pico Projector,” J. Disp. Technol. 8, 219-224 (2012).
[14] S. Lin, S. Lin, and J. Yu, “Modeling and characterization of TFT-LCD display module for LED projector,” Optik 122, 1538-1543 (2011).
[15] C. C. Hung, J. H. Sun, Y. F. Tzeng, J. MacDonald, W. C. Lai, S. X. Li, Y. C. Fang, H. C. Sun, and Y. L. Chen, “A study of extended optimization of U-type rod for LED projectors,” Optik 122, 385-390 (2011).
[16] H. Murat, A. Avci, R. Beernaert, K. Dhaenens, H. D. Smet, L. Bogaert, Y. Meuret, and H. Thienpont, “Two LCOS full color projector with efficient LED illumination engine,” Displays 30, 155-163 (2009).
[17] T. Sandner, D. Jung, D. Kallweit, T. Grasshoff, and H. Schenk, “Microscanner with vertical out of plane combdrive,” International Conference on Optical MEMS and Nanophotonics (OMN), 2011.
[18] J. W. Pan, S. H. Tu, C. M. Wang, and J. Y. Chang, “High efficiency pocket-size projector with a compact projection lens and a light emitting diode-based light source system,” Appl. Opt. 47, 3406-3414 (2008).
[19] W. S. Sun, C. L. Tien, C. H. Ma, and J. W. Pan, “Compact LED projector design with high uniformity and efficiency,” Appl. Opt. 53, H227-H232 (2014).
[20] X. Zhao, Z. L. Fang, J. C. Cui, X. Zhang, and G. G. Mu, “Illumination system using LED sources for pocket-size projectors,” Appl. Opt. 46, 522-526 (2007).
[21] E. Chen and F. Yu, “Design of an elliptic spot illumination system in LED-based color filter–liquid-crystal-on-silicon pico projectors for mobile embedded projection,”Appl. Opt. 51, 3162-3170 (2012).
[22] Virendra N. Mahajan, “Optical Imaging and Aberrations,”Part I-Ray Geometrical Optics, P104-P106, SPIE PRESS, Bellingham, 1998
[23] 許修真,「以LED為光源的反射式液晶投影均光系統之設計與分析」,元智大學電機工程研究所,碩士論文,民國93年7月。
[24] 洪維毅,「採用非對稱式面積分割型均光系統與LED光源之DLP投影機」,中央大學光電科學與工程學研究所,碩士論文,民國102年1月。
[25] F. Fournier and J. Rolland, “Design Methodology for High Brightness Projectors,” J. Disp. Technol. 4, 86-91 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔