(34.204.201.220) 您好!臺灣時間:2021/04/19 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宗毅
研究生(外文):Zong-Yi Chen
論文名稱:基於簡略模式成本值之快速高效率視訊編碼(HEVC)畫面內編碼方法
論文名稱(外文):Fast Intra Coding based on Rough Mode Cost for High Efficiency Video Coding
指導教授:張寶基
指導教授(外文):Pao-Chi Chang
學位類別:博士
校院名稱:國立中央大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:71
中文關鍵詞:高效率視訊編碼編碼單位畫面內編碼快速演算法簡略模式決策轉換單位
外文關鍵詞:high efficiency video coding (HEVC)coding unit (CU)intra codingfast algorithmrough mode decisiontransform unit (TU)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
高效率視訊編碼 (High Efficiency Video Coding, HEVC)為當前最新的國際視訊編碼標準,相較於前一代H.264/AVC視訊編碼標準,HEVC提供了各種更具彈性的編碼方式及工具,有效提升其編碼效率,在相同主觀視覺品質下,HEVC相較於H.264/AVC大約可節省一半的位元率。不論畫面內編碼 (intra coding)或畫面間編碼 (inter coding),HEVC所採用的四分樹架構 (quadtree structure)的編碼單位 (coding unit, CU)及轉換單位 (transform unit, TU),以及多樣的預測單位(prediction unit, PU),均大幅增加其編碼之運算複雜度。本論文針對畫面內編碼的CU、TU深度決策以及PU的intra模式決策,提出以簡略模式成本值 (rough mode cost, RMC)為基礎之快速編碼演算法,RMC為參考軟體原始編碼過程所產生,所提方法產生之額外運算量相當低。在CU深度決策方面,由於CU切割與不切割時RMC存在一定差異,離線編碼取得目前CU切割/不切割時RMC的值,將兩畫面特性: 畫面複雜度與畫面梯度值納入考量,以曲線擬合求得CU切割/不切割的臨界成本值的模型,快速決定當前CU是否切割;在intra模式決策方面,RMC較大的模式被選為最佳模式的機會較低,因此將RMC較大的模式從候選列表濾除,減少需要測試的模式;在TU深度決策方面,我們以最小RMC模式的TU切割狀態來預測其餘intra候選模式的TU切割方式,所提方法用以取代參考軟體內建方法,且更有效率地快速決策TU。所提之整體快速演算法與參考軟體相比,平均約可節省51%的編碼時間,而僅增加約0.69%的BD-rate。
High efficiency video coding (HEVC) is the latest international video coding standard. Comparing with H.264/AVC, HEVC provides flexible encoding schemes and tools to enhance the coding efficiency. HEVC saves half the bit rate of H.264/AVC for the same subjective video quality. The quadtree-based coding unit (CU) and transform unit (TU) structure, as well as various prediction units (PUs) of HEVC, increase encoding complexity considerably in intra coding and inter coding. This dissertation proposes a rough mode cost (RMC)-based algorithm for accelerating CU/TU depth decisions and PU mode decisions in HEVC intra coding. The computational overhead of the proposed algorithm is low because the RMC is calculated during the original intra coding process in reference software. For CU depth decisions, RMC values are used to determine CU partition because RMCs of split CUs often differ from those of nonsplit CUs. Two frame characteristics, namely frame complexity and frame gradient, are used to model offline RMCs of split and nonsplit CUs to obtain the threshold for fast CU decision. In the case of intra PU mode decisions, modes with higher RMCs have a lower probability of being the best mode. Hence, such modes are removed from the candidate list to reduce the number of test modes. In the case of TU depth decisions, the TU partition of the mode with the least RMC is used to determine the TU partitions of the remaining candidate modes. The proposed TU partitioning method is used to replace the default method in reference software, and it demonstrates superior performance to the default method. The proposed algorithm can reduce the encoding time by approximately 51% on average, with a 0.69% increase in the BD rate.
Abstract ii
Acknowledgements iv
Contents v
List of Figures vii
List of Tables ix
1. Introduction 1
1.1 Overview of HEVC 1
1.2 Intra Coding in HEVC 4
1.3 Organization of this Dissertation 6
2. Literature Review 8
2.1 CU Depth/PU Size Decision 8
2.2 Intra Mode Decision 11
2.3 TU Depth Decision 12
3. Proposed RMC–based Fast Intra Coding 15
3.1 Fast CU Depth Decision 16
3.1.1 Observation and Analysis 16
3.1.2 Early CU Splitting and Early CU Termination 19
3.1.3 Threshold Selection 20
3.1.4 Threshold Modeling 22
3.1.5 Flow of the Proposed Fast CU Depth Decision 26
3.2 Fast Intra Mode Decision 26
3.2.1 Observation and Analysis 26
3.2.2 Intra Candidate Modes Reduction 27
3.2.3 Threshold Selection 29
3.2.4 Threshold Modeling 29
3.2.5 Flow of the Proposed Fast Intra Mode Decision 32
3.3 Fast TU Depth Decision 33
3.4 Summary of Overall Algorithm 37
4. Experimental Results 39
4.1 Performance Evaluation of the Proposed Algorithm 41
4.2 Performance Comparison with Existing Algorithms 45
5. Conclusions and Future Works 47
5.1 Conclusions 47
5.2 Future Works 47
References 48
Publications 54


[1] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.
[2] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.
[3] J. Lainema, F. Bossen, W. J. Han, and J. H. Min, “Intra coding of the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1792–1801, Dec. 2012.
[4] L. Zhao, L. Zhang, X. Zhao, S. Ma, D. Zhao, and W. Gao, “Further encoder improvement of intra mode decision,” JCTVC-D283, Daegu, KR, Jan. 2011.
[5] B. Bross, H. Kirchhoffer, H. Schwarz, T. Wiegand, “Fast intra encoding for fixed maximum depth of transform quadtree,” JCTVC-C311, Guangzhou, CN, Oct. 2010.
[6] C. Bai and C. Yuan, “Fast coding tree unit decision for HEVC intra coding,” IEEE ICCE-China Workshop, Shenzhen, China, Apr. 2013, pp. 28–31.
[7] J. W. Qiu, F. Liang, and Y. L. Luo, “A fast coding unit selection algorithm for HEVC,” IEEE International Conference on Multimedia and Expo Workshops (ICMEW), California, USA, Jul. 2013, pp. 1–5.
[8] L. Shen, Z. Zhang, and Z. Liu, “Effective CU Size Decision for HEVC Intracoding,” IEEE Trans. Image Process., vol. 23, no. 10, pp. 4232–4241, Oct. 2014.
[9] T. Nishikori, T. Nakamura, T. Yoshitome, and K. Mishiba, “A fast CU decision using image variance in HEVC intra coding,” in Proc. IEEE Symposium on Industrial Electronics and Applications (ISIEA), Kuching, Malaysia, Sep. 2013, pp. 52–56.
[10] Q. Zhang, J. Sun, Y. Duan, and Z. Guo, “A two-stage fast CU size decision method for HEVC intracoding,” in Proc. IEEE 17th International Workshop on Multimedia Signal Processing (MMSP), Oct. 2015, pp. 1–6.
[11] M. U. K. Khan, M.Shafique, and J. Henkel, “An adaptive complexity reduction scheme with fast prediction unit decision for HEVC intra encoding,” in Proc. IEEE International Conference on Image Processing (ICIP), Melbourne, VIC, Sep. 2013, pp. 1578–1582.
[12] W. Shi, X. Jiang, T. Song, and T. Shimamoto, “Edge information based fast selection algorithm for intra prediction of HEVC,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Ishigaki, Nov. 2014, pp. 17–20.
[13] B. Min and Ray C. C. Cheung, “A fast CU size decision algorithm for the HEVC intra encoder,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 5, pp. 892–896, May 2015.
[14] T. Mallikarachchi, A. Fernando, and H. K. Arachchi, “Efficient coding unit size selection based on texture analysis for HEVC intra prediction,” in Proc. IEEE International Conference on Multimedia and Expo (ICME), Chengdu, China, Jul. 2014, pp. 1–6.
[15] M. Radosavljevi´c, G. Georgakarakos, S. Lafond, and D. Vukobratovi´c, “Fast coding unit selection based on local texture characteristics for HEVC intra frame,” in Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Dec. 2015, pp. 1377–1381.
[16] W. Geuder, P. Amon, and E. Steinbach, “Low-complexity block size decision for HEVC intra coding using binary image feature descriptors,” in Proc. IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Sep. 2015, pp. 242–246.
[17] L. Shen, Z. Zhang, and P. An, “Fast CU size decision and mode decision algorithm for HEVC intra coding,” IEEE Trans. Consum. Electron., vol. 59, no. 1, pp. 207–213, Feb. 2013.
[18] G. Kim and C. Yim, “Adaptive CU splitting and pruning method for HEVC intra coding,” Electronics Letters, vol. 50, no. 10, pp. 748–750, May 2014.
[19] X. Shang, G. Wang, T. Fan, and Y. Li, “Fast CU size decision and PU mode decision algorithm in HEVC intra coding,” in Proc. IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Sep. 2015, pp. 1593–1597.
[20] S. Cho and M. Kim, “Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 9, pp. 1555–1564, Sep. 2013.
[21] K. Lim, J. Lee, S. Kim, and S. Lee, “Fast PU skip and split termination algorithm for HEVC intra prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 8, pp. 1335–1346, Aug. 2015.
[22] Y. Zhang, S. Kwong, G. Zhang, Z. Pan, H. Yuan, and G Jiang, “Low complexity HEVC intra coding for high-quality mobile video communication,” IEEE Trans. Industrial Informatics, vol. 11, no. 6, pp. 1492–1504, Dec. 2015.
[23] C. F. Tseng and Y. T. Lai, “Fast coding unit decision and mode selection for intra-frame coding in high-efficiency video coding,” IET Image Processing, vol. 10, no. 3, pp. 215–221, 2016.
[24] H. Zhang and Z. Ma, “Fast coding unit decision and mode selection for intra-frame coding in high-efficiency video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 4, pp. 660–668, Apr. 2014.
[25] D. Palomino, E. Cavichioli, A. Susin, L. Agostini, M. Shafique, and J. Henkel, “Fast HEVC intra mode decision algorithm based on new evaluation order in the coding tree block,” in Proc. Picture Coding Symposium (PCS), San Jose, CA, Dec. 2013, pp. 209–212.
[26] T. S. Kim, M. H. Sunwoo, and J. G. Chung, “Hierarchical fast mode decision algorithm for intra prediction in HEVC,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, May. 2015, pp. 2792–2795.
[27] L. Gao, S. Dong, W. Wang, R. Wang, and W. Gao, “Fast intra mode decision algorithm based on refinement in HEVC,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, May. 2015, pp. 517–520.
[28] S. Wang, S. Ma, X. Jiang, J. Fan, D. Zhao, and W. Gao, “A fast intra optimization algorithm for HEVC,” in Proc. IEEE Visual Communications and Image Processing Conference, Valletta, Dec. 2014, pp. 241–244.
[29] J. Tariq, S. Kwong, and H. Yuan, “HEVC intra mode selection based on rate distortion (RD) cost and sum of absolute difference (SAD),” J. Vis. Commun. Image Represent., vol. 35, pp. 112–119, Feb. 2016.
[30] W. Li, R. Wang, J. Wang, D. Xu, and J. Xu, “A fast mode decision algorithm for intra prediction in HEVC,” in Proc. International Conference on Computer Science and Service System (CSSS), 2014, pp. 587–590.
[31] K. Choi and E. S. Jang, “Early TU decision method for fast video encoding in high efficiency video coding”, Electronics Letters, vol. 48, no. 12, pp. 689–691, June 2012.
[32] Y. Shi, Z. Gao, and X. Zhang, “Early TU split termination in HEVC based on quasi-zero-block,” in Proc. 3rd International Conference on Electric and Electronics (EEIC), Hong Kong, China, Nov. 2013, pp. 450–454.
[33] J. Kang, H. Choi, and J. G. Kim, “Fast transform unit decision for HEVC,” in Proc. IEEE International Congress on Image and Signal Processing (CISP), Hangzhou, China, Dec. 2013, pp. 26–30.
[34] Z. Lv, S. Dong, R. Wang, X. Xie, H. Jia, W. Wang, and W. Gao, “An all-zero blocks early detection method for high efficiency video coding,” in Proc. SPIE, Feb. 2014, vol. 9029, pp. 902902-1–902902-7.
[35] P. T. Chiang and T. S. Chang, “Fast zero block detection and early CU termination for HEVC video coding,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, May 2013, pp. 1640–1643.
[36] S. W. Teng, H. M. Hang, and Y. F. Chen, “Fast mode decision algorithm for residual quadtree coding in HEVC,” in Proc. Visual Communications and Image Processing (VCIP), Nov. 2011, pp. 1–4.
[37] Y. Zhang, Z. Li, M. Zhao, and B. Li, “Fast residual quad-tree coding for the emerging high efficiency video coding standard,” China Communications, vol. 10, no. 10, pp. 155–166, Oct. 2013.
[38] C. C. Wang, Y. C. Liao, J. W. Wang, and C. W. Tung, “An effective TU size decision method for fast HEVC encoders,” in Proc. International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, Jun. 2014, pp. 1195–1198.
[39] JCT-VC, “Common test conditions and software reference configurations,” JCTVC-L1100, 12th JCTVC meeting, Geneva, CH, Jan. 2013.
[40] JCT-VC, “High efficiency video coding (HEVC) test model 15 (HM15) encoder description,” JCTVC-Q1002, 17th JCT-VC meeting, Valencia, ES, Apr. 2014.
[41] G. Bjontegaard, “Calculation of Average PSNR Difference Between RD-curves,” ITU-T Q.6/SG16 VCEG 13th Meeting, Document VCEG-M33, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔