(3.235.41.241) 您好!臺灣時間:2021/04/15 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳浚晟
研究生(外文):Chun-Cheng Wu
論文名稱:乳房組織光學係數量測 暨資料庫建立之研究
指導教授:潘敏俊
指導教授(外文):Min-Chun Pan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:83
中文關鍵詞:雙積分球系統乳房組織光學特性吸收係數散射係數
外文關鍵詞:Double integrating sphere systemOptical Characteristics of Breast TissueAbsorption CoefficientScattering Coefficient
相關次數:
  • 被引用被引用:1
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
根據行政院衛生福利部國民健康署指出女性罹患乳癌的發生率為所有癌症之首,而其死亡率也高居癌症中的第四位;而統計數據指出第0期乳癌的5年存活率高達97.70%。因此發展一個能夠安全且有效的診斷方式是一個重要的課題。實驗室近十年致力於發展近紅外光擴散光學斷層影樣(Near-infrared Diffuse Optical Tomography, NIR-DOT)系統,其檢測機制是藉由組織在近紅外光下光學特性的差異來辨別正常與腫瘤組織。
本研究著重於開發直徑300 mm雙積分球量測系統,用以建立乳房組織光學資料庫;系統建構包括元件特性測試、實驗流程設計及系統因子分析等。確定本系統之穩定性,另藉由光學特性假體、豬皮及脂肪層的量測,確認此系統的可靠性。研究中在三軍總醫院,完成人體乳房組織切片樣本之光學特性測定;另配合病理部之切片病理分析報告,進而逐步建立台灣婦女乳房組織之光學資料庫,並藉由此資料庫之數據,完成以組織光學特性判斷組織病變如侵襲癌、原位癌及纖維組織增生之特性。
根據實驗量測結果具體得知,癌變組織相對於正常組織,吸收的對比度(contrast)約為2.00±1.28倍,而散射係數對比度約為1.37±0.35倍。更進一步可以藉由癌變組織的吸收係數判斷癌變組織狀態,侵襲癌相對於正常組織的吸收的對比度約為1.50±0.50倍,而原位癌之吸收對比度約在4.13±1.43倍。而散射部分可以判斷癌變組織有無纖維組織的增生及鈣化,無纖維組織增生及鈣化之腫瘤組織相對於正常組織的散射係數的對比度約為1.19±0.22倍,而有無纖維組織的增生及鈣化散射對比度約在2.06±0.99倍。因此,藉由生理組織之光學特性,可作為判斷組織病變的重要指標。

The incidence rate and mortality rate of breast cancer is ranked first and fourth in Taiwan respectively, and statistical data indicate the 5-year survival rate of stages 0 breast cancer was 97.70%. Therefore, the development of a safe and effective diagnostic modality is an important issue. Our laboratory developed near-infrared diffuse optical tomography (NIR-DOT) system, it distinguished normal tissue and tumor tissue by the optical characteristics.
The research developed ∅ 300 mm double integrating sphere measurement system to establish an archive for optical coefficients of breast tissue. We confirm the stability of system by element characteristic test, experimental process design and system factor analysis. Measuring the optical characteristics of the phantom, pigskin and fat to confirm reliability of this system. We conducted clinical trial at the Tri-Service General Hospital (TSGH), and measured optical characteristics of breast tissue biopsy and correseonded sliced pathological analysis report to gradually establish an archive for optical coefficients of breast tissue in Taiwan. According to the archive, we odtain optical characteristics of tissue to determine tissue lesions such as infiltrating carcinoma, carcinoma in situ and fibroblasts proliferation.
Based on test results, We acquired absorption coefficeut (μa) and scattering coefficient (μs') from breast tissue biopsy. We compared tumor tissue to normal tissue with the contrast of μa is 2.00 ± 1.28 and μs' is 1.37 ± 0.35. Furthermore, the μa of tumor separated infiltrating carcinoma and carcinoma in situ, and the contrast is 1.50 ± 0.50 and 4.13 ± 1.43. The μs' of tumor can determine that there is the fibroblasts proliferation or not, and the contrast is 1.19 ± 0.22 and 2.06 ± 0.99. Because of the optical characteristics of the physiological tissue, it is used as an important indicator of tissue lesions.

摘要 I
ABSTRACT II
誌謝 III
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-3 研究範疇 4
第二章 背景知識 5
2-1 組織光學特性 5
2-1-1 光學特性 5
2-1-2 組織光學特性 7
2-1-3 乳房結構與光學特性 8
2-2 雙積分球理論推導 11
第三章 實驗系統與方法 15
3-1 雙積分球系統架設 15
3-2 系統校正 16
3-2-1 元件特性 16
3-2-2 電光轉換式 20
3-2-3 雙積分球系統之架設 21
3-3 因子分析 30
3-3-1 系統因子模擬分析 30
第四章 實驗結果之驗證討論 36
4-1 假體實驗 36
4-1-2 單一特性假體量測 37
4-1-2 複合特性假體量測 37
4-2 生物組織量測 40
4-2-1 豬脂肪組織量測 40
4-2-2 豬皮組織之量測 41
4-3 乳房組織切片光學係數之量測 43
4-3-1 病理組織切片與乳癌分類 43
4-3-2 病理組織切片收案結果與病理報告分析 44
4-3-3 雙積分球系統量測結果之有效性探討 56
第五章 結論與未來展望 61
5-1 結論 61
5-2 未來展望 62
參考文獻 63
附錄 A 68

[1] 行政院衛生福利部國民健康署,2012年癌症登記報告(2014)。http://www.hpa.gov.tw/Bhpnet/Web/Index/Index.aspx
[2] K. D. Paulsen and H. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. phys., Vol. 22, 691-701 (1995).
[3] V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007), Chap. 2.
[4] P. Nobel, Physicochemical and Environmental Plant Physiology (Academic Press, 2009), Chap. 4.
[5] H. Abitan, H. Bohr, and P. Buchhave, "Correction to the Beer-Lambert-Bouguer law for optical absorption," Appl. Opt., Vol. 47, 5354-5357 (2008).
[6] D. M. Vesna, B. M. Željka and I. Katarina, "Kubelka-Munk theory in describing optical properties of paper (I)," Tech. Gaz., Vol. 18, 117-124 (2011)
[7] K. Kamiuto, "The two-flux approximations for radiative transfer in scattering media," J. Quant. Spectrosc. Radiat. Transfer, Vol. 38, 261-265 (1987).
[8] D. Leonid, R. Jaona, and B. Dominique, "Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements," J. Opt. Soc. Am. A, Vol. 23, 91-98 (2006).
[9] W. Stephen, I. Laura, and M. B. John, "Kubelka-Munk or Neural Networks for Computer Colorant Formulation?" Proc. SPIE, Vol. 4421, 745-748 (2006).
[10] A. B. David, P. Constantinos, and R. Nimmi, Handbook of Biomedical Optics (CRC, 2011), Chap. 5.
[11] M. P. James, and G. G. Barbara, The Art of Radiometry (SPIE, 2009), Chap. 2.
[12] P. Wigand, "Double integrating spheres: A method for assessment of optical properties of biological tissues," Master's thesis, University of Linköping, Schweden (2004).
[13] W. P. John, A. P. Scott, W. van Niek, F. B. Johan, J. C. M. S. Henricus, and J. C. van G. Martin, "Double-integrating-sphere system for measuring the optical properties of tissue," Appl. Opt., Vol. 32, 399-410 (1993).
[14] J. F. Beeky, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, and M. J. C. Gemert van, "In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm," Phys. Med. Biol., Vol. 42, 2255–2261 (1997).
[15] 余捷如,「乳房組織光學係數量測技術發展暨資料庫建立之研究」碩士論文,國立中央大學光機電工程研究所(2013).
[16] A. Parretta and G. Calabrese, "About the Definition of "Multiplier" of an Integrating Sphere," Int. J. of Optics and Applications, Vol. 3, 119-124 (2013).
[17] J. L Steven, "Corrigendum: Optical properties of biological tissues:a review," Phys. Med. Biol., Vol. 58, 5007–5008 (2013).
[18] E. Johansson, "Measurements of tissue optical properties using an integrating sphereset up," Master's thesis, Lund Institute of Technology, Lund, Sweden (1997).
[19] 李冠卿,近代光學(聯經出版,民國77年),第五章。
[20] H. Eugene, Optics (Addison-Wesley, 2001), Chap. 4.
[21] W. V. Lihong, and W. Hsin-i, Biomedical Optics: Principles and Imaging (Wiley, 2007), Chap. 1.
[22] B. Paul, "Biomedical photoacoustic imaging," Interface Focus, Vol. 1, 602–631 (2011).
[23] Y. Barbara, O’D. Geraldine, and W. Phillip, Wheater's Functional Histology: A Text and Colour Atlas (Churchill Livingstone, 2014), Chap. 19.
[24] V. G. Peters, V. G. Peters, D. R. Wymant, M. S. Patterson, and G. L. Frank, "Optical properties of normal and diseased human breast tissue in the visible and near infrared," Phys. Med. Biol., Vol. 35, 1317–1334 (1990)


[25] H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, "Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths," Phys. Med. Biol., Vol. 36, 579-590 (1991).
[26] T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, "Optical properties of normal and diseased breast tissue: prognosis for optical mammography," J. Biomed. Opt., Vol. 3, 342–355 (1996).
[27] S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt., Vol. 37, 1982–1989 (1998).
[28] D. J. Hawrysz, and E. M. Sevick-Muraca, "Developments towards diagnostic breast cancer imaging using nearinfrared optical measurements and fluorescent contrast agents," Neoplasia, Vol. 2, 388–417 (2000).
[29] M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, "Three-dimensional diffuse optical mammography with ultrasound localization in a human subject," J. Biomed. Opt., Vol. 5, 237–247 (2000).
[30] T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke,J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol., Vol. 47, 2847–2861 (2002).
[31] L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt., Vol. 9, 1137–1142 (2004).
[32] 王瑜華,楊洪欽,謝樹森,葉真,蘇毅明, "離體正常乳腺組織350 ~ 850 nm波段光譜特性, "光譜學與光譜分析 Vol.29 No.10, 2751–2755(2009).



[33] T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Glagher, J. Geradts, L. G. Wilke, and N. Ramanujam, "Performance metrics of anoptical spectral imaging system for intra-operative assessment of breast tumor margins," Opt. Express, Vol. 18, 8058-8076 (2010).
[34] A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue Second Edition, (Springer SBM, 2010), Chap. 8.
[35] J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, "Two integrating spheres with an intervening scattering sample," J. Opt. Soc. Am. A, Vol. 9, 621–631 (1992).
[36] S. Prahl, "Everything I think you should know about Inverse Adding-Doubling," (2011). http://omlc.org/software/iad/
[37] B. S. Wiseman and Z. Werb, "Stromal effects on mammary gland development and breast cancer," Science 296: 1046–1049 (2002).
[38] 王甄、施庭芳,乳房影像學-基礎與實際應用(國立台灣大學醫學院出版,民國98年),第三章。
[39] A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer–Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, "Catalogue of human tissue optical properties at terahertz frequencies," J. Biol. Phys., vol. 29, no. 2/3, pp. 123–128, (2003).
[40] P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, "Terahertz pulsed spectroscopy of freshly excised human breast cancer," Opt. Exp., vol. 17, pp. 12444–12454, (2009).
[41] H. Dehghani, B. A. Brooksby, B. W. Pogue, and K. D. Paulsen, "Effects of refractive index on near-infrared tomography of the breast," Appl. Opt., Vol. 44, 1870–1878 (2005).
[42] B. W. Pogue, and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt., Vol. 11, 041102 (2006).

[43] 游釗銘,「頻域式擴散光學造影之乳房掃描暨量測系統研究」博士論文,國立中央大學機械工程系(2015).
[44] B. A. Brooksby, "Combining near infrared tomography and magnetic resonance imaging to improve breast tissue chromophore and scattering assessment," Ph.D. Dissertation, Dartmouth College, Hanover, New Hampshire (2005).
[45] A. N. Bashkatov, É. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of subcutaneous adipose tissue in the spectral range 400-2500 nm," Opt. Spectrosc., Vol. 99, 836-842 (2005).
[46] S. Sarkar, A. A. Gurjarpadhye, C. G. Rylander, and M. N. Rylandera, "Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns," J. Biomed. Opt., Vol. 16, 051304–051311 (2011).
[47] 臺灣癌症臨床研究合作組織,乳癌診斷與治療共識(國家衛生研究院,2004).
[48] American Cancer Society, "Breast Cancer," (2014). http://www.cancer.org/cancer/breastcancer/detailedguide/index

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔