跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾思綺
研究生(外文):Tseng,Szu-Chi
論文名稱:黑腹果蠅之脂肪酸去飽和酶對乾燥逆境所扮演的角色
論文名稱(外文):The Roles of Fatty Acid desaturases in Tolerance to Desiccation from Drosophila melanogaster
指導教授:簡一治
指導教授(外文):Chien,Yi-Chih
口試委員:林忠毅簡正一簡一治
口試委員(外文): Chien,Yi-Chih
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:58
中文關鍵詞:去飽和酶乾燥失水率黑腹果蠅
外文關鍵詞:DesaturaseDesiccationWater loss rateD. melanogaster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
昆蟲能夠成功的在陸地環境生存,主要歸功於牠們能夠有效的容忍乾燥,昆蟲失水方式主要是因為水分穿過角質層所造成的表皮失水。失水率的轉變與脂質層屬性的改變有關,當表面脂質在臨界溫度熔化時,表皮脂質會由固態轉變為液態,表皮則會從水分不可滲透的狀態轉變成水分輕易流失的狀態,因此可以推測出熔點與失水率有關。前人的體外試驗指出,碳氫化合物的雙鍵越多,熔點越低。去飽和酶(Desaturases)可以催化一個雙鍵引入脂肪酸的碳氫鏈中,因此本研究想要證實在體內試驗時,脂肪酸的不飽和度增加或減少時,是否會改變耐乾旱能力。本研究以黑腹果蠅(Drosophila melanogaster)為材料,利用UAS-GAL4系統分別將果蠅的Desaturase1, Desaturase 2及Desaturase F基因分別在全身細胞、絳細胞及脂肪細胞過表現或靜默,接著將果蠅放置在乾燥環境觀察其生存率變化。乾旱試驗結果顯示若將Desaturase基因過表現或靜默時,確實會使其生存時間改變,最後在數據結果上顯示,Desaturase 2基因在幫助果蠅對抗乾燥環境扮演了一個重要的角色。
The survival of insects in terrestrial environments is due largely to their ability to resist desiccation stress. Water loss in insects is majorly through the cuticle, and any change in rate of water loss can be accounted for by the physical transformation of the lipid layer in cuticle. In other words, that surface lipids are melted at a "critical" or "transition" temperature (Tc), then result in conversion from a solid, impermeable barrier to a fluid state, through which water can easily diffuses. Therefore, it can be hypothesized that the higher the Tc is, the lower the water loss can be. An in vitro study further suggested that the more double bonds in hydrocarbons, the lower melting temperature is. Desaturases catalyze the addition of double bonds in the hydrocarbon chains of fatty acids. Thus, we hypothesized that by changing the distribution and level of unsaturation in fatty acid in vivo, the cuticle water loss in insects might be influenced, which should be substantiated by their relative tolerance to desiccation stress. In this study, three desaturase genes, including Desaturase1, Desaturase 2, and Desaturase F from Drosophila melanogaster, were overexpressed/knocked down in specific tissues by using UAS-GAL4 system. The resulted flies (including wildtype) were treated with desiccation, then their mortality were observed and compared. The results indicated that overexpression or knockdown of desaturase genes might affect survival of fruit flies under desiccation stress, and the gene of Desaturase 2 might play an important role in desiccation.
致謝 Ⅰ
摘要 Ⅱ
Abstract ⅠⅡ
目錄 Ⅳ
圖表目錄 V
前言 1
一、逆境對生物的關係 1
二、昆蟲對抗乾旱的機制 1
三、果蠅水分失去的途徑 3
四、影響果蠅表皮失水的因素 4
五、脂肪酸與去飽和酶 6
六、果蠅去飽和酶 7
七、表皮碳氫化合物有潛在的兩種特性 9
八、實驗目的 11
材料與方法 13
一、果蠅培養方式 13
二、果蠅品系介紹 13
三、UAS-Gal4 系統 15
四、過表現去飽和酶基因之品系建立 15
五、靜默去飽和酶基因之品系建立 17
六、控制組之品系建立 19
七、乾旱實驗 20
八、統計方法 21
結果 22一、過度表現去飽和酶基因對果蠅在乾旱試驗之生存率曲線分析 22
二、靜默去飽和酶基因對果蠅在乾旱試驗之生存率曲線分析 26
討論 31
一、過度表現去飽和酶基因對果蠅乾旱試驗之影響 31
二、靜默去飽和酶基因對果蠅乾旱試驗之影響 32
三、表皮碳氫化合物的組成對果蠅在乾燥環境生存下的影響 33
四、性別對果蠅在乾燥環境下生存的影響 35
總結 37
參考文獻 56

Arrese, E. L., Canavoso, L. E., Jouni, Z. E., Pennington, J. E., Tsuchida, K., & Wells, M. A. (2001). Lipid storage and mobilization in insects: current status and future directions. Insect biochemistry and molecular biology, 31(1), 7-17.
Bazinet, A. L., Marshall, K. E., MacMillan, H. A., Williams, C. M., & Sinclair, B. J. (2010). Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability. Journal of Insect Physiology, 56(12), 2006-2012.
Billeter, J.-C., Atallah, J., Krupp, J. J., Millar, J. G., & Levine, J. D. (2009). Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature, 461(7266), 987-991.
Blomquist, G. J., & Bagnères, A.-G. (2010). Insect hydrocarbons: biology, biochemistry, and chemical ecology: Cambridge University Press.
Chertemps, T., Duportets, L., Labeur, C., Ueyama, M., & Wicker‐Thomas, C. (2006). A female‐specific desaturase gene responsible for diene hydrocarbon biosynthesis and courtship behaviour in Drosophila melanogaster. Insect molecular biology, 15(4), 465-473.
Chown, S. (2002). Respiratory water loss in insects. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(3), 791-804.
Chung, H., & Carroll, S. B. (2015). Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays, 37(7), 822-830.
Chung, H., Loehlin, D. W., Dufour, H. D., Vaccarro, K., Millar, J. G., & Carroll, S. B. (2014). A single gene affects both ecological divergence and mate choice in Drosophila. Science, 343(6175), 1148-1151.
Dallerac, R., Labeur, C., Jallon, J.-M., Knipple, D. C., Roelofs, W. L., & Wicker-Thomas, C. (2000). A Δ9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 97(17), 9449-9454.
Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist's Swiss army knife. genesis, 34(1‐2), 1-15.
Ferveur, J.-F., Savarit, F., O'Kane, C. J., Sureau, G., Greenspan, R. J., & Jallon, J.-M. (1997). Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science, 276(5318), 1555-1558.
Gibbs, A. (1998). Water-proofing properties of cuticular lipids. American Zoologist, 38(3), 471-482.
Gibbs, A. (2002a). Lipid melting and cuticular permeability: new insights into an old problem. Journal of Insect Physiology, 48(4), 391-400.
Gibbs, A. (2002b). Water balance in desert Drosophila: lessons from non-charismatic microfauna. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(3), 781-789.
Gibbs, A., Chippindale, A. K., & Rose, M. R. (1997). Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. Journal of Experimental Biology, 200(12), 1821-1832.
Gibbs, A., Fukuzato, F., & Matzkin, L. M. (2003). Evolution of water conservation mechanisms in Drosophila. Journal of Experimental Biology, 206(7), 1183-1192.
Gibbs, A., & Markow, T. A. (2001). Effects of age on water balance in Drosophila species. Physiological and Biochemical Zoology, 74(4), 520-530.
Gibbs, A., & Pomonis, J. G. (1995). Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 112(2), 243-249.
Hadley, N. F. (1994). Water relations of terrestrial arthropods: Academic Press.
Hadley, N. F., Ahearn, G. A., & Howarth, F. G. (1981). Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. Journal of Arachnology, 215-222.
Hadley, N. F., & Schultz, T. D. (1987). Water loss in three species of tiger beetles (Cicindela): correlations with epicuticular hydrocarbons. Journal of Insect Physiology, 33(10), 677-682.
Hood, W. G., & Tschinkel, W. R. (1990). Desiccation resistance in arboreal and terrestrial ants. Physiological Entomology, 15(1), 23-35.
Montooth, K. L., & Gibbs, A. G. (2003). Cuticular pheromones and water balance in the house fly, Musca domestica. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135(3), 457-465.
Ntambi, J. M., & Miyazaki, M. (2004). Regulation of stearoyl-CoA desaturases and role in metabolism. Progress in lipid research, 43(2), 91-104.
Stinziano, J. R., Sové, R. J., Rundle, H. D., & Sinclair, B. J. (2015). Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 180, 38-42.
Toolson, E. C., & Hadley, N. F. (1977). Cuticular permeability and epicuticular lipid composition in two Arizona vejovid scorpions. Physiological Zoology, 323-330.
Tsai, C.-Y. (2015). 黑腹果蠅之不飽和脂肪酸酶對抗冷逆境所扮演的角色. 國立彰化師範大學生物系碩士論文.
Wan, K.-T. (2013). 脂肪酸去飽和酶對黑腹果蠅適應逆境的影響. 國立彰化師範大學生物系碩士論文.
White, C. R., Blackburn, T. M., Terblanche, J. S., Marais, E., Gibernau, M., & Chown, S. L. (2007). Evolutionary responses of discontinuous gas exchange in insects. Proceedings of the National Academy of Sciences, 104(20), 8357-8361.
Wicker-Thomas, C., Guenachi, I., & Keita, Y. F. (2009). Contribution of oenocytes and pheromones to courtship behaviour in Drosophila. BMC biochemistry, 10(1), 1.
Wicker-Thomas, C., Henriet, C., & Dallerac, R. (1997). Partial characterization of a fatty acid desaturase gene in Drosophila melanogaster. Insect biochemistry and molecular biology, 27(11), 963-972.
Wigglesworth, V. (1933). The physiology of the cuticle and of ecdysis in Rhodnius prolixus (Triatomidae, Hemiptera); with special reference to the function of the oenocytes and of the dermal glands. QJ microsc. Sci, 76, 269-318.
Wigglesworth, V. (1945). Transpiration through the cuticle of insects. Journal of Experimental Biology, 21(3-4), 97-114.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top