跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 23:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱韋承
研究生(外文):Ciou, Wei-Cheng
論文名稱:IEEE 802.11ax媒體存取層與隨機存取協定之介紹
論文名稱(外文):Introduction to IEEE 802.11ax MAC and Random Access Protocol
指導教授:鄧德雋鄧德雋引用關係
指導教授(外文):Der-Jiunn Deng
口試委員:林春成宋俊賢鄧德雋
口試委員(外文): Deng, Der-Jiunn
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:25
中文關鍵詞:無線區域網路媒體存取層IEEE 802.11ax通訊協定密集環境
外文關鍵詞:Wireless Local Area NetworkMedium Access ControlIEEE 802.11axdense environment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於行動裝置的興起,無線區域網路已成為我們生活中的一部分,但因為現實環境中密集部署BSS (Basic Service Set),與現有IEEE 802.11標準中存在著效能不彰等問題,因此近年來IEEE 802.11正努力尋求一種從根本改善效能的新方案,此方案名為IEEE 802.11ax,且已被批准為下一代無線區域網路 (Wireless Local Area Network, WLAN)。在無線區域網路中,媒體存取層 (Medium Access Control, MAC) 協定它提供分配共用無線通道的效能、降低碰撞與提高吞吐量,因此在標準制定中媒體存取層協定是相當重要的關鍵因素。
在本論文中,我們依照目前IEEE 802.11ax標準制定的進程來預期可能使用的技術,並且總結正在進行的IEEE 802.11ax標準化工作,與說明它們背後的動機、解釋設計原則與確認新的研究課題。此外我們也將介紹在IEEE 802.11ax 媒體存取層中的隨機存取協定,與研究目前在IEEE 802.11ax工作團隊中討論最熱烈與最有可能成為標準的競爭解決演算法,並且我們透過模擬結果來分析該方案的效能與在不同RU (Resource Unit) 數量中的系統效率。

With the rise of mobile devices, Wireless Local Area Network (WLAN) has become a part of our life. Because there are existing some problems that densely deploy Basic Service Set (BSS) in the real environment and has poor performance in existing standard of IEEE 802.11, IEEE 802.11 now is looking for a new program which can improve the performance fundamentally. This program is named IEEE 802.11ax, and has been approved for next generation WLAN. In WLAN, Medium Access Control (MAC) protocol can provide the efficiency in sharing the common radio channel, reduce collision and improve throughput, so MAC plays a very important key factor.
In this thesis, we introduce the random access protocol in IEEE 802.11ax MAC and study the contention resolution algorithm that most likely will to be adapted as standard of IEEE 802.11ax at present. We also via the simulation results to analyze the performance of this program and the system efficiency of different resource unit (RU) number.

謝誌 I
摘要 II
Abstract III
目錄 IV
圖目錄 V
表目錄 V
第一章 緒論 1
1.1  研究背景 1
1.2  研究目的 4
第二章 IEEE 802.11ax 預期將採用的技術 7
2.1  IEEE 802.11ax實體層技術 7
2.2  IEEE 802.11ax中央協調式媒體存取層 8
2.3  IEEE 802.11ax媒體存取層協定 9
2.4  Multiuser 10
2.5  目標喚醒時間 (Target Wake Time, TWT) 13
2.6  IEEE 802.11ax向前相容 15
第三章 IEEE 802.11ax競爭解決演算法 16
3.1  Up-link OFDMA 隨機存取機制 16
3.2  競爭解決演算法 17
第四章 IEEE 802.11ax與現有機制效能比較 20
第五章 結論 23
參考文獻 24

[1] K. C. Chen, “Medium Access Control of Wireless Local Area Networks for Mobile Computing,” IEEE Networks, vol. 8, issue 5, pp. 50-64, September 1994.
[2] D. J. Deng, K. C. Chen, R. S. Cheng, “IEEE 802.11ax: Next Generation Wireless Local Area Networks,” Proceeding of Qshine, pp. 77-82, August 2014.
[3] IEEE 802.11-13/0287r3, “P802.11ax Task Group Press Release,” 2013.
[4] D. J. Deng, C. H. Ke, H. H. Chen, and Y. M. Huang, “Contention Window Optimization for IEEE 802.11 DCF Access Control,” IEEE Transactions on Wireless Communications, vol. 7, no. 12, pp. 5129-5135, 2008.
[5] Y. F. Zhu, Q. Zhang, Z. S. Niu, and J. Zhu, “On Optimal QoS-Aware Physical Carrier Sensing for IEEE 802.11 based WLANs: Theoretical Analysis and Protocol Design,” IEEE Transactions on Wireless Communications, vol. 7, no. 4, pp. 1369–1378, 2008.
[6] J. Liu et al., Considerations on OBSS Spatial Re-Use, IEEE 802.11-14/1435r0, P802.11ax Task Group Press Release, 2014
[7] S. Merlin et al., TGax Simulation Scenarios, IEEE 802.11-14/0980r5, P802.11ax Task Group Press Release, 2014.
[8] K. C. Chen, R. DeMarca, (ed.) Mobile WiMAX, Wiley, 2009.
[9] R. G. Gallager, “A Perspective on Multiaccess Channels,” IEEE Tr. On Information Theory, vol. 31, no. 2, pp. 124-142, March 1985.
[10] Y. K. Sun, K. C. Chen, D. C. Twu, “Generalized Tree Multiple Access Protocols in Packet Switching Networks,” Proceeding IEEE PIMRC, vol. 3, Helsinki, pp. 918-922, 1997.
[11] D. J. Deng, H. C. Yen, “Quality-of-Service Provision System for Multimedia Transmission in IEEE 802.11 Wireless LANs,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 6, pp. 1240-1252, June 2005.
[12] IEEE 802.11-14/1282r0, “Liaison statement from 3GPP on LAA (License Assisted Access),” 2014.
[13] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with Adaptive Subcarrier, Bit, and Power Allocation,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 10, pp. 1747-1758, October 1999.
[14] D.J. Deng, K.C. Chen, R.S. Cheng, “IEEE 802.11ax: Next generation wireless local area networks,” 2014 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine), pp. 77-82, 2014.
[15] C. Ghosh et al., UL OFDMA-based Random Access Procedure, IEEE 802.11-15/1105r1, P802.11ax Task Group Press Release, 2015.
[16] G. Bianchi, ”Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE j. Select. Areas. Commun., vol. 18, no.3, pp. 535-547, Mar. 2000.
[17] F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin, ”Unsaturated Throughput Analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects,” IEEE Trans. Wireless. Commun., vol. 7, no. 4, pp. 1276-1286, Apr. 2008.
[18] P. Chatzimisios, A. C. Boucouvalas, V. Vitsas, ”IEEE 802.11 packetdelay - a finite retry limit analysis,” in Proc. IEEE GLOBAECOM’03,vol. 2, pp. 950-954, Dec. 2003.
[19] L. Chu et al., UL OFDMA Bandwidth, IEEE 802.11-15/0615r3, P802.11ax Task Group Press Release, 2015.
[20] Z. Rong et al., CP Indication for UL MU Transmission, IEEE 802.11-15/0813r0, P802.11ax Task Group Press Release, 2015.
[21] A. Asterjadhi et al., Buffer Status Report, IEEE 802.11-15/1120r0, P802.11ax Task Group Press Release, 2015.
[22] L. Chu et al., Broadcast and Unicast (Trigger) in DL MU, IEEE 802.11-15/0831r2, P802.11ax Task Group Press Release, 2015.
[23] P. Huang et al., MU-RTS/CTS for DL MU, IEEE 802.11-15/0867r1, P802.11ax Task Group Press Release, 2015.
[24] C. Ghosh et al., Random Access with Trigger Frames using OFDMA, IEEE 802.11-15/0875r1, P802.11ax Task Group Press Release, 2015.
[25] R. Huang et al., Triggered OFDMA Random Access Observations, IEEE 802.11-15/1137r1, P802.11ax Task Group Press Release, 2015.
[26] Y. Tanaka et al., Overall Protocol of UL MU BA for Multicast Transmission, IEEE 802.11-15/1043r1, P802.11ax Task Group Press Release, 2015.
[27] S. Merlin et al., Trigger Frame Format, IEEE 802.11-15/0877r0, P802.11ax Task Group Press Release, 2015.
[28] A. Asterjadhi et al., Scheduled Trigger frames, IEEE 802.11-15/0880r2, P802.11ax Task Group Press Release, 2015.
[29] D. J. Deng, K. C. Chen, R. S. Cheng, “QoS Provisions in Next Generation WLAN MAC,” Proceeding of International conference on selected topics in Mobile and Wireless Networking (MoWNet 2016), Cairo, Egypt, 11-13 April, 2016.
[30] Jordan Lee, D. J. Deng, and K. C. Chen, “OFDMA-based Hybrid Channel Access for IEEE 802.11ax WLAN,” Proceeding of IEEE International Conference on Communications (ICC 2016), Kuala Lumpur, Malaysia, 23-27 May, 2016. (submitted)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊