參考文獻
英文文獻
Alvarez-Ramirez, J., & Rodriguez, E. (2011). Long-term recurrence patterns in the late 2000 economic crisis: Evidences from entropy analysis of the Dow Jones index. Technological Forecasting and Social Change, 78(8), 1332-1344.
Appel, G., & Hitschler, W. F. (1979). Stock market trading systems. USA: Irwin Professional Pub.
Asadi, S., Hadavandi, E., Mehmanpazir, F., & Nakhostin, M. M. (2012). Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction. Knowledge-Based Systems, 35, 245-258.
Azadeh, A., Ghaderi, S. F., & Sohrabkhani, S. (2008). Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conversion and Management, 49(8), 2272-2278.
Boyacioglu, M.A., Avci, D. (2010).An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange.Expert Systems with Applications, 37(12), 7908-7912.
Chang, P. C., Fan, C. Y., & Liu, C. H. (2009). Integrating a piecewise linear representation method and a neural network model for stock trading points prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part C Applications and Reviews, 39(1), 80-92.
Chang, P. C., Liao, T. W., Lin, J. J., & Fan, C. Y. (2011). A dynamic threshold decision system for stock trading signal detection. Applied Soft Computing, 11(5), 3998-4010.
Chang, P. C., Wang, D. D., & Zhou, C. L. (2012). A novel model by evolving partially connected neural network for stock price trend forecasting. Expert Systems with Applications, 39(1), 611-620.
Chaput, J. S. & Ederington, L. (2003).Option Spread and Combination Trading, Journal of Derivatives, 10, 70-88.
Davies, P. C. (1994). Design Issues in Neural Network Development. Neuro Vest Journal, 2(5), 21-25.
Etzkorn, M. (1997). Trading with Oscillators: Pinpointing Market Extremes--theory and Practice (Vol. 8 pp.91-93). New York : John Wiley & Sons.
Freisleben, B. (1992, June). Stock market prediction with backpropagation networks. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 451-460). Springer Berlin Heidelberg.
Göçken, M., Özçalıcı, M., Boru, A., & Dosdo˘gru c, A. T. (2016). Integrating metaheuristics and Artificial Neural Networks for improvedstock price prediction. Expert Systems With Applications, 44, 320-331.
Granville, J. E. (1963). New key to stock market profits. Prentice-Hall.
Güreşen, E., & Kayakutlu, G. (2008, October). Forecasting stock exchange movements using artificial neural network models and hybrid models. InInternational Conference on Intelligent Information Processing (pp. 129-137). Springer US.
Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). Using artificial neural network models in stock market index prediction. Expert Systems with Applications, 38(8), 10389-10397.
Hafezia, R., Shahrabib, J., & Hadavandi, E. (2015). A bat-neural network multi-agent system (bnnmas) for stock priceprediction: Case study of dax stock price. Applied Soft Computing, 29, 196-210.
Hecht-Nielsen, R. (1989, June). Theory of the backpropagation neural network. IEEE International Joint Conference on Neural Networks (pp. 593-605).
Hong, H., & Stein, J. C. (2007). Disagreement and the stock market (digest summary). Journal of Economic perspectives, 21(2), 109-128.
Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert systems with Applications, 38(5), 5311-5319.
Laboissiere, L. A., Fernandes, R. A. S., & Lage, G. G. (2015). Maximum and minimum stock price forecasting of Brazilian power distribution companies based on artificial neural networks. Applied Soft Computing, 35, 66-74.
Lahmiri, S. (2014). Wavelet low- and high-frequency components as features for predicting stock prices with backpropagation neural networks. Journal of King Saud University - Computer and Information Sciences, 26(2), 218-227.
Lam, M. (2004). Neural Network Techniques for Financial Performance Prediction: Integrating Fundamental and Technical Analysis. Decision Support Systems, 37(4), 567-581.
Lambert, D.R. (1980), Commodity channel index: Tool for trading cyclic trends. Stocks & Commodities, 1(5), 120-122. Available from: ftp://80.240.216.180/Transmission/%D0%A4%D0%B0%D0%B9%D0%BB%D1%8B/S&C%20on%20DVD%2011.26/VOLUMES/V01/C05/COMM.pdf
Lo, A. W., Mamaysky, H., & Wang, J. (2000). Foundations of technical analysis: Computation algorithms, statistical inference, and empirical implementation. Journal of Finance, 55(4), 1705-1770.
Lu, C. J. (2010). Integrating independent component analysis-based denoising scheme with neural network for stock price prediction. Expert Systems with Applications, 37(10), 7056-7064.
Majhi, B., Rout, M., & Baghel, V. (2014). On the development and performance evaluation of a multiobjective GA-based RBF adaptive model for the prediction of stock indices. Journal of King Saud University-Computer and Information Sciences, 26(3), 319-331.
Martinez, L. C., da Hora, D. N., de M Palotti, J. R., Meira Jr, W., & Pappa, G. L. (2009, June). From an artificial neural network to a stock market day-trading system: A case study on the BM&F BOVESPA. IEEE International Joint Conference on Neural Networks (pp. 2006-2013).
McCulloch, W. S., & Pitts, W. (1943).A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics, 5, 115-33.
Mitra, S. K. (2012). An Option Pricing Model That Combines Neural Network Approach and Black Scholes Formula. Global Journal of Computer Science and Technology, 12(4), 7-15.
Mu, G. H., Chen, W., Kertész, J., & Zhou, W. X. (2009). Preferred numbers and the distributions of trade sizes and trading volumes in the Chinese stock market. The European Physical Journal B, 68(1), 145-152.
Niaki, S. T. K., & Hoseinzade, S. (2013). Forecasting S&P 500 index using artificial neural networks and design of experiments. Journal of Industrial Engineering International, 9(1), 1-9.
O’Connor, N., & Madden, M. G. (2006). A neural network approach to predicting stock exchange movements using external factors. Knowledge-Based Systems, 19(5), 371-378.
Patel, J., Shah, S., Thakkar, P., & Kotecha, K (2015a). Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259-268.
Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015b).Predicting stock market index using fusion of machine learning techniques. Expert Systems with Applications, 42(4), 2162–2172.
Rather, A. M., Agarwal, A., & Sastry, V. N. (2015). Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications, 42(6), 3234-3241.
Refenes, A. N., Zapranis, A., & Francis, G. (1994). Stock performance modeling using neural networks: a comparative study with regression models. Neural networks, 7(2), 375-388.
Roh, T. H. (2007). Forecasting the volatility of stock price index. Expert Systems with Applications, 33(4), 916-922.
Rumelhart, D. E., & McClelland, J. L., & PDP Research Group (1986). Parallel distributed processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations & Volume 2: Psychological and Biological Models. Cambridge, MA: MIT Press.
Scharth, M., & Medeiros, M. C. (2009). Asymmetric effects and long memory in the volatility of Dow Jones stocks. International Journal of Forecasting, 25(2), 304-327.
Shen, W., & Xing, M. (2009, May). Stock Index Forecast with Back Propagation Neural Network Optimized by Genetic Algorithm. In Proceedings of Second International Conference on Information and Computing Science (Vol. 2, pp. 376-379), Manchester.
Ticknor, J. L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501-5506.
Tseng, C. H., Cheng, S. T., Wang, Y. H., & Peng, J. T. (2008). Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices. Physica A: Statistical Mechanics and its Applications, 387(13), 3192-3200.
Wang, C. P., Lin, S. H., Huang, H. H., & Wu, P. C. (2012). Using neural network for forecasting TXO price under different volatility models. Expert Systems with Applications, 39(5), 5025-5032.
Wang, J. Z., Wang, J. J., Zhang, Z. G., & Guo, S. P.(2011). Forecasting stock indices with back propagation neural network. Expert Systems with Application, 38(11), 14346-14355.
Wang, Y. H. (2009). Nonlinear neural network forecasting model for stock index option price: Hybrid GJR-GARCH approach. Expert Systems with Applications, 36(1), 564-570.
Williams, L. R. (1973). How I Made One Million Dollars in the Commodity Market Last Year. Carmel Valley, California: Conceptual Management.
Yao, J., Tan, C. L., & Poh, H. L. (1999). Neural Networks for technical Analysis: A Study on KLCI. International Journal of Theoretical and Applied Finance, 2(2), 221-241.
Yudong, Z., & Lenan W. (2009).Stock market prediction of S& P 500 via combination of improved BCO approach and BP neural network Expert Systems with Applications, 36, 8849-8854.
Zahedi, J., & Rounaghi, M. M. (2015). Application of artificial neural network models and principal component analysis method in predicting stock prices on Tehran Stock Exchange. Physica A: Statistical Mechanics and its Applications, 438, 178-187.
Zhang, Y., & Wu, L. (2009). Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network. Expert systems with applications, 36(5), 8849-8854.
中文部分
江典音(民 102)。類神經網路應用於台灣50投資策略之研究。私立東吳大學財務工程與精算數學系碩士論文,未出版,台北市。巫雅琪(民 97)。結合財務指標與經濟附加價值於類神經網路模型預測股價-以光電產業為例。國立臺南大學科技管理學系碩士論文,未出版,臺南市。李欣蓓(民 99)。結合技術分析與人工智慧方法之股價預測。國立中興大學電子商務學系碩士論文,未出版,台中市。李惠妍、吳宗正、溫敏杰(民 95)。迴歸模式與類神經網路在台股指數期貨預測之研究。經營管理論叢,2(1),83-99。李湘懿(民 102)。結合牛式樣板與技術指標預測臺灣股市指數之漲跌。私立元智大學資訊管理學系碩士論文,未出版,桃園縣。杜金龍(民 81)。技術指標在台灣股市應用的訣竅。臺北市:非凡。
沈偉立(民 96)。結合廻歸決策樹與類神經網路於時間序列資料之預測。私立大同大學資訊經營系碩士論文,未出版,台北市。周若瑄(民 103)。以綜合式人工類神經網路方法預測股價指數:以泰國為例。私立中國文化大學國際企業管理學系碩士論文,未出版,臺北市。周澤伯(民 103)。混合型人工類神經網路應用於台灣50 隔日收盤價預測之研究。私立中國文化大學資訊管理學系碩士論文,未出版,台北市。林鈺綾(民 99)。三大法人選擇權與期貨未平倉量之研究。國立交通大學資訊管理學系碩士論文,未出版,新竹市。洪雅雯(民 97)。台灣上市化學生技醫療類股價指數預測之研究。國立成功大學統計學系碩士論文,未出版,臺南市。張大晉(民 97)。應用價格循環理論及遺傳類神經網路於股價預測之應用。私立大葉大學資訊管理學系碩士論文,未出版,彰化縣。張竹君(民 104)。結合股票與衍生性金融商品指標以預測股價指數之研究。國立彰化師範大學資訊管理學系碩士論文,未出版,彰化市。張育維(民 102)。改良式類神經網路預測模式於股價預測之研究。北商學報,23,1-18。張修明(民 101)。應用倒傳遞類神經網路及時間序列法建構股價報酬率預測模型-以台灣股市為例。國立屏東科技大學資訊管理系碩士論文,未出版,屏東縣。張唯毅(民 98)。類神經網路在選擇權交易策略之應用:以臺指選擇權為例。國立雲林科技大學財務金融學系碩士論文,未出版,雲林縣。
許澤林(民 101)。類神經網路預測股價走勢。私立逢甲大學應用數學學系碩士論文,未出版,臺中市。陳佳慶(民 95)。倒傳遞類神經網路於臺灣期貨交易所股價指數期貨預測之應用。國立高雄第一科技大學金融營運學系碩士論文,未出版,高雄市。陳宗敬(民 101)。應用灰關聯分析、遺傳演算法與模糊神經網路預測臺灣股票加權指數之研究。私立義守大學財務金融學系碩士論文,未出版,高雄市。陳威光(民 99)。衍生性商品:選擇權、期貨、交換與風險管理,臺北市:智勝文化。
陳昱東(民 97)。探討價格循環理論及類神經網路應用於股價預測系統。私立大葉大學資訊管理學系碩士論文,未出版,彰化縣。陳柏豪(民 95)。交易時間差距對台股指數現貨與期貨的影響。私立南華大學財務管理系碩士論文,未出版,嘉義縣。
陳香伶、呂立晨、劉益萍、傅麒錦、陳昱達(民 96)。應用類神經網路於國內開放式科技基金淨值預測之研究。南亞學報,27,197-207。
陳鄢貞(民 100)。以財務指標及技術指標建構股價預測模型-類神經網路模型之應用。國立臺北大學國際財務金融學系碩士論文,未出版,臺北市。陳適宜(民 99)。基因類神經網路在臺股指數期貨的預測與蝶式交易策略研究。國立臺北大學企業管理學系碩士論文,未出版,臺北市。黃俊宏(民 100)。期貨基金績效預測之探討-以混沌現象與類神經網路分析。私立中原大學企業管理學系碩士論文,未出版,桃園市。葉怡成(民 98),類神經網路模式應用與實作(9版)。臺北市:儒林。
鄒杰夫(民 97)。台灣上市類股股價預測模型之研究-倒傳遞類神經網路模型之應用。私立玄奘大學財務金融學系碩士論文,未出版,新竹市。廖文榮(民 98)。基於移動平均分析技術實作類神經網路系統於股價預測。國立中興大學電子商務學系碩士論文,未出版,台中市。廖四郎、王昭文(民 99)。期貨與選擇權(3版)。臺北市:新陸。
廖祐君(民 99)。運用整合性分類模型於台股大盤趨勢預測。私立中國文化大學商學院資訊管理學系碩士論文,未出版,台北市。蔡守倫(民 96)。以倒傳遞類神經網路與其他預測方法預測股價之研究-以台灣 50 指數股票型基金為例。私立玄奘大學財務金融學系碩士論文,未出版,新竹市。
蔡進金(民 97)。運用股價預測模型進行台股現貨價差交易之實證研究。國立高雄應用科技大學金融資訊研究所碩士論文,未出版,高雄市。盧昆鴻(民 97)。技術指標應用於台灣 50 指數之實證研究。國立高雄第一科技大學風險管理與保險系碩士論文,未出版,高雄市。駱國華(民 98)。應用類神經網路探試未平倉量於台指期貨之多空行為分析。國立交通大學資訊管理學系碩士論文,未出版,新竹市。蘇偉庭(民 100)。以類神經網路分析財報預測台灣上市公司股價之變動。私立中國文化大學資訊管理學系碩士論文,未出版,臺北市。網路部分
Seidel, H. (2013, December 4). TAIFEX and Eurex announce launch date of joint product cooperation. Eurex Exchange. Retrieved July 1, 2015, fromhttp://www.eurexchange.com/exchange-en/about-us/news/TAIFEX-and-Eurex-announce-launch-date-of-joint-product-cooperation/726078
各期貨契約交易量統計(2015年版)【資料檔】。台北市:臺灣期貨交易所。
臺灣期貨雙月刊(2016)。期手交鋒盟主爭霸賽,2。民 105 年 7 月 8 日,取自:http://www.taifex.com.tw/chinese/10/moth_all/201602_all.pdf
歷年上櫃股票統計(2015年版)【資料檔】。台北市:證券櫃檯買賣中心。
歷年股票市場概況表(2015年版)【資料檔】。台北市:臺灣證券交易所。