跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王麗晴
研究生(外文):Wang, Li-Chin
論文名稱:銅鋅錫硒(硫)薄膜二次相對太陽電池的影響
指導教授:林義成林義成引用關係
口試委員:曾百亨金重勳黃家華林義成許弘儒
口試日期:2016-06-08
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:123
中文關鍵詞:銅鋅錫硒薄膜長晶機制二次相漏電流能隙
外文關鍵詞:Cu2ZnSn(SSe)4 thin filmgrowth mechanismsecondary phaseleakage currentEg
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
化合物半導體銅鋅錫硒(Cu2ZnSnSe4)是目前最具有潛力之薄膜太陽電池材料之一,其結構是由II 族Zn與IV族的 Sn 取代CIS/CIGS 太陽電池之III族的In或Ga元素演變而來,具有與 CIGS 相近的材料性質,Cu2ZnSn(S,Se)4屬直接能隙半導體,並有著高光吸收係數(104 cm-1 ),可利用硫元素來取代部分硒的位置,作能隙上的調變0.8~1.5 eV ,來提高元件的開路電壓(Voc)。
在濺鍍後硒化製程技術中,主要是利用濺鍍金屬靶在鉬玻璃上沉積銅-鋅-錫前驅層,再利用硒蒸氣與其反應形成銅鋅錫硫硒(CZTSSe)薄膜。CZT(S,Se)薄膜在硒化(硫化)過程中,會因為成分差異、堆疊順序或硒化條件等因素,有不同的長晶反應路徑,進而影響薄膜二次相或缺陷的形成,目前這些二次相的生成位置以及在不同生成位置對元件造成的影響,還尚未有詳細的了解。此外,為獲得具有高元件轉換效率的薄膜太陽能電池,吸收層的能隙(Eg)工程是一個可能的解決方法,當CZTSe 吸收層的S含量增加,其吸收層能隙會增加,但由於控制相純度和成份組成困難,可能造成長晶過程更為複雜,使二次相及較高的缺陷密度容易產生。
本研究是以兩階段方式成長CZTSe(S)薄膜,首先以濺鍍CuZnSn三元合金靶,沉積CuZnSn前驅層於鍍有Mo背電極的蘇打玻璃基板上,在管式爐進行硒(硫)化退火處理。本論文的主要研究可分成以下三個部分:
首先進行銅鋅錫硒(CZTSe)薄膜長晶機制之研究: 本論文是利用CuZnSn三元合金靶作為濺鍍靶材,其目的是為獲得成份均勻的CZTS(Se)薄膜,透過不同硒化溫度進行CZTSe薄膜長晶過程研究,由實驗結果可以觀察到,相較於單一元素堆疊的前驅層,三元合金前驅層在長晶過程,可在較低溫得到CZTSe,其長晶過程為Sn+ Cu+ Cu6Sn5+ Cu5Zn8→ Cu2-XSe + SnSe2+ ZnSe→ Cu2SnSe3 + ZnSe→ Cu2ZnSnSe4。
接著進行不同成份的銅鋅錫硒(CZTSe)薄膜研究 : 調變不同的吸收層組成比在[Zn]/ [Sn]=0.63~1.97範圍內,探討成份對CZTSe薄膜二次相形成的影響,並針對二次相生成位置及其對元件造成的影響進行討論。由不同成份的CZTSe元件轉換效率發現,當CZTSe薄膜成份比在富鋅條件下([Zn]/[Sn] ≥ 1.11)有相近的效率;而當CZTSe薄膜成份比在富錫條件下([Zn]/ [Sn]≦0.75),皆沒有元件轉換效率。由分析結果發現,當CZTSe薄膜成份比為[Zn]/[Sn] ≥ 1.11,在表面有大量的SnSe2及Cu2SnSe3二次相,以C-AFM量測顯示SnSe2及Cu2SnSe3二次相造成表面有大面積的漏電流;CZTSe薄膜成份比為[Zn]/[Sn]≦ 0.75則在底部有大量的ZnSe相,其為造成元件電性不佳的可能原因。此外,吸收層[Zn]/[Sn]比不同也會影響CZTSe/Mo界面層的MoSe2厚度,當薄膜成份比[Zn]/[Sn] ≥ 1.11其MoSe2界面層厚度皆小於1μm,可能是在CZTSe/ MoSe2界面有CuSe界面層阻擋Se進入背電極與Mo反應;另一可能原因為,[Zn]/[Sn]≥1.11的CZTSe薄膜底部的晶粒尺寸較小,使Na的行徑路徑增加,導致Na聚集在薄膜底部,與Se反應形成NaSe相,增加 Se 進到背電極的難度。綜合上述結果,CZTSe薄膜成份比[Zn]/[Sn] ≥ 1.11沒有效率有三個原因,表面大量二次相造成大面積的漏電流,MoSe2界面層厚度大於1.2 μm,及較差的結晶品質。
最後對不同[S]/[S]+[Se] 比的CZT (S,Se)薄膜進行研究: 我們藉由調變吸收層S 及 Se的比例控制吸收層能隙,以提高薄膜太陽能電池轉換效率,探討不同[S]/[S]+[Se] 比例對於CZT(S,Se)薄膜的影響。當CZTSe薄膜加入S元素,會改變其化學成份比例及結構,[S]/[S]+[Se]比例越高,Zn/ Sn比越低,且表面及底部出現SnSe2、CuSn(S,Se)及ZnS二次相;CZTS薄膜表面及底部分別有SnS,Cu2SnS3二次相。而由SIMS分析發現當S含量越多,其縱向S分佈越平緩,顯示S分佈越均勻。CZT(S,Se)薄膜[S]/ [S]+[Se]= 0.55之元件,有最佳效率轉換5.2 % ,顯示S掺雜所改變的能隙及缺陷對元件所造成的影響,大於二次相的影響。

During the preparation of Cu2ZnSn(S,Se)4 thin film, the difference kinds of components, stacking orientation or the conditions of selenization would lead reactions into different paths. It also further effects to the nucleation of secondary phase. By far, we’re not fully understand about the secondary phase, not only its nucleation site is not predictable, but also the influence to the device from that different secondary phase sites. Besides, to gain a solar cell with high photoelectric conversion efficiency, Adjusting band gap (Eg) of absorption layermight be a solution. By increasing the sulfur concentration in the Cu2ZnSn(S,Se)4 thin film, the Eg would be increased, but it is difficult to control the crystal phases and composition. It might complicate the preparation reactions, and even generate more secondary phase in the film.
This study carried out with two-stage preparation of CZTSe(S) thin film. First, CuZnSn layer were prepared by sputtering method as the precursors layer on the molybdenum-coated glass substrate electrode, and then the selenization treatment would follow right after. The research of this thesis would be divided into the following three parts:
First, the study of CZTSe growth mechanism. In this study, the CuZnSn ternary alloy sputtering target was used to prepare a unified CZTSe thin film. With the different selenization temperature, trying to reveal the CZTSe growth mechanism. Results showed that, with the low temp. of 350 oC, The precursor layer were identified as CZTSe phase.
Follow up is the study with different composition of CZTSe film. By adjusting the ratio of [Zn]/[Sn] to investigate the effect of the composition of the secondary phase. Discussion about the influence of the performance impacted by secondary phase and its different nucleation sites. The results showed that under the zinc-rich preparation condition ([Zn]/[Sn]≥1.11), these devices possessed the similar conversion efficiency (≤4.4%). With the tin-rich condition ([Zn]/[Sn]≦0.75), the efficiency was too low to detect. According to theanalysis, with the composition of [Zn]/[Sn]≦0.75, there were great amount of secondary phase, SnSe2and Cu2SnSe3were found at the surface. Base on the C-AFM test result, These secondary phase would cause leakage currentover large area. With the composition of [Zn]/[Sn]≥1.11, large amount of ZnSe were generated at the bottom of the layer and limited the conversion efficiency. Besides, the composition tended to affect effect the thickness of interface layer from CZTSe/Mo, MoSe2. With the ratio of [Zn]/[Sn]≥1.11, the thickness of MoSe2 were less than 1μm, due to the CuSe layer, which is closed to the interface of CZTSe/MoSe2, blocked element selenium from entering counter-electrode and reacting with element molybdenum. Alternatively, with the composition of [Zn]/[Sn]≥1.11, the grain size at the bottom of the layer were smaller, it increased the pathway for element sodium accumulating at the bottom of the layer and even reacting with selenium to fabricate NaSe. It increased the difficulty for element selenium reaching the counter-electrode. Based on the above discussion, the reason why the conversion efficiencyof CZTSe thin film with the composition condition of [Zn]/[Sn]≦0.75 was not detectable was concluded with three reasons, the great amount of secondary phase, such as SnSe2 and Cu2SnSe3, generated at the surface and caused leakage current over large area, too thick of MoSe2 inter layer and poor crystallinity
Finally, the study of influence from the ratio of [S]/[S]+[Se] to CZTSe thin film. By adjusting the ratio of [S]/[S]+[Se] to control the Eg, trying to improve the performance of conversion efficiency. With the increasing content of sulfur, the higher the open-circuit voltage(Voc), it revealed that the sulfur-rich surface lower the short-circuit density (Jsc), due to the defect increasing in the film. The pure CZTSe thin film possesses the highest fill factor (F.F), it is due to almost no leakage current at its surface. On the other hand, adding element sulfur into CZTSe thin film modified the crystal structure and chemical composition. The higher sulfur content, the ratio of Zn/Sn lower, and the secondary phase, such as SnSe2, CuSn(S,Se) and ZnS appeared. At the preparation condition of [S]/[S]+[Se]= 0.55, The device demonstrated the best conversion efficiency of 5.2%. It proved that the influence of Eg comes greater than that from secondary phase.

第一章 緒 論.....1
1-1 研究背景.....1
1-2 研究動機與目的.....2
1-3論文架構.....4

第二章 文獻回顧與理論說明.....6
2-1 Cu2ZnSn(S,Se)4薄膜太陽電池.....6
2-1-1 Cu2ZnSn(S,Se)4晶體結構.....7
2-1-2 Cu2ZnSn(S,Se)4成分組成及相圖.....8
2-1-3 Cu2ZnSn(S,Se)4 能隙.....11
2-1-4 Cu2ZnSn(S,Se)4電性和物理缺陷.....12
2-2 Cu2ZnSn(S,Se)4薄膜太陽電池構造 15
2-2-1 基板.....15
2-2-2 鉬(Mo)背電極(Back contact).....16
2-2-3 CZT(S,Se)吸收層(Absorber layer).....16
2-2-4 CdS緩衝層 (Buffer layer).....16
2-2-5 i-ZnO/ ITO窗口層(Window layer).....17
2-2-6 Al上電極 (Grid).....17
2-3 CZT(Se,S)吸收層相關研究.....17
2-3-1 CZT(Se,S)薄膜長晶機制研究.....17
2-3-2 CZT(Se,S)吸收層化學成份計量研究.....19
2-3-3 CZT(Se,S)吸收層[S]/[S]+[Se]比例之研究..... 22

第三章 實驗方法與儀器設備.....25
3-1 CZT(Se,S)元件製備.....25
3-1-1鉬背電極製備.....27
3-1-2銅-鋅-錫金屬前驅層製備.....28
3-1-3硒(硫)化退火步驟.....28
3-1-4硫化鎘緩衝層(CdS).....30
3-1-5氧化鋅(ZnO)透光層.....30
3-1-6 ITO透光層.....31
3-1-7鋁(Al grid)電極.....31
3-2 CZT(Se,S)薄膜及元件特性之分析.....31
3-2-1 掃描電子顯微鏡(SEM).....31
3-2-2 X光繞射儀(XRD).....32
3-2-3拉曼光譜儀(Raman).....32
3-2-4導電式原子力顯微鏡 (Conductive-AFM).....34
3-2-5球面像差修正掃描穿透式電子顯微鏡(Cs-corrected STEM)..... 34
3-2-6二次離子質譜儀 (SIMS).....35
3-2-7模擬太陽光譜儀.....36

第四章 結果與討論...37
4-1 CZTSe薄膜長晶之研究.....37
4-1-1 CZTSe薄膜長晶機制之研究.....37
4-1-2 CZTSe薄膜硒化條件之研究.....45
4-2 成份對CZTSe薄膜二次相的影響.....55
4-2-1 成分對CZTSe薄膜形貌的影響.....56
4-2-2 成分對CZTSe薄膜結晶結構的影響.....63
4-2-3 二次相對CZTSe薄膜電流路徑的影響.....69
4-2-4 不同成分CZTSe薄膜之穿透式電子顯微鏡分析.....74
4-2-5 不同成分CZTSe薄膜之SIMS分析.....81
4-2-6 CZTSe元件特性分析.....84
4-3 [S]/[S]+[Se]比對CZT(S,Se)薄膜的影響.....86
4-3-1 [S]/[S]+[Se]比對CZT(S,Se)薄膜形貌的影響.....86
4-3-2 [S]/[S]+[Se]比對CZT(S,Se)薄膜結晶結構的影響.....94
4-3-3 二次相對CZT(S,Se)薄膜電流路徑的影響.....101
4-3-4 不同[S]/[S]+[Se]比CZT(S,Se)薄膜之穿透式電子顯微鏡分析 .....105
4-3-5 不同[S]/[S]+[Se]比CZT(S,Se)薄膜之SIMS分析.....108
4-3-6 CZT(S,Se)元件特性分析.....110

第五章 結論.....112
5-1 結論.....112
5-2 未來研究.....114
文獻.....115

[1]P. Reinhard, F. Pianezzi, B. Bissig, A. Chirilă, P. Blösch, S. Nishiwaki, S. Buecheler, A. N. Tiwari, IEEE J. Photovolt. , 5, 656-663 (2015)
[2]M. M. A. Green, Prog. Photovolt. Res. Appl. 14 , 383-392 (2006)
[3]B. A. Anderson, C. Azar, J. Holmberg, S. Karlsson, Energy, 23, 407-411 (1998)
[4]H. Katagiri, Thin Solid Films, 480, 426 (2005)
[5]H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films, 517, 2455-2460 (2009)
[6]L. Grenet, S. Bernardi, D. Kohen, C. Lepoittevin, S. Noel, N. Karst, A. Brioude, S. Perraud, H. Mariette, Sol. Energy Mater. Sol. Cells 101, 11-14 (2012)
[7]I. Repins, C. Beall, N. Vora, C. De Hart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154-159(2012)
[8]K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, S. Guha, Appl. Phys. Lett. , 97, 143508 (2010)
[9]T. Todorov, O. Gunawan, S.J. Chey, T.G. De Monsabert, A. Prabhakar, D.B. Mitzi, Thin Solid Films 519, 7378-7381 (2011)
[10] T. Todorov, D. Mitzi, IBM. Retrieved 22 August (2012)
[11] I. Repins, C. Beall, N. Vora, C. De Hart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C.Hsu,A. Goodrich, Sol. Energy Mater. Sol. Cells, 101,154-159 (2012)
[12]H. S. Duan, W. Yang, B. Bob, C. J. Hsu, B. Lei, Y. Yang, Adv. Funct. Mater., 23, 1466-1471 (2013)
[13] X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J.R. Morante, D.M. Berg, P.J. Dale, S. Siebentritt,Appl. Phys. Lett. , 98,181905 (2011)
[14] A. Fairbrother, E. García-Hemme, V. Izquierdo-Roca, X. Fontané, F.A. Pulgarín-Agudelo, O. Vigil-Galán, A. Pérez-Rodríguez, E. Saucedo, J. Am. Chem. Soc. , 134, 8018–8021 (2012)
[15]A. Nagoya, R. Asahi, G. Kreese,J. Phys.: Condens. Matter, 23, 404203 (2011)
[16] J. J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman,Chem. Mater. , 23, 4625–4633 (2011)
[17]I.D. Olekseyuk, E.V. Dudchak, L.V. Piskach,J. Alloys Compd., 368, 135–143 (2004)
[18]A. Weber, R. Mainz, T. Unold, S. Schorr, H.-W. Schock, Physica Status Solidi C - Current Topics in Solid State Physics, 6, 1245–124 (2009)
[19]S. Siebentritt, Thin Solid Films 535,1-4 (2013)
[20]B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, Prog. Photovolt. Res. Appl. 21, 72-76 (2011)
[21]S. Chen, X. G. Gong,A. Walsh, S. H. Wei, Appl. Phys. Lett, 94, 041903 (2009)
[22]A. J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, J. Vac. Sci. Technol., A 29, 051203 (2011)
[23]T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M.A. Contreras, R. Noufi, H.W. Schock, Thin Solid Films 361–362, 478–481 (2000)
[24]H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, Cryst. Eng. Commun., 13 , 2222 (2011)
[25]M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Thin Solid Films, 519,7403 (2011)
[26]S. Chen, A. Walsh, J. Yang, X.G. Gong, L. Sun, P.X. Yang, J.H. Chu, S.H. Wei, Phys. Rev. B, 83, 125201 (2011)
[27]Bernardini G.P., Borrini D., Caneschi A., Di Benedetto F., Gatteschi D., Ristori D., Romanelli M., Phys. Chem. Miner. 27,453 – 461 (2000)
[28]Bonazzi, P., Bindi, L., Bernardini, G.P., Menchetti, S., Can. Mineral. 41, 639-647(2003)
[29]Persson, C., J. Appl. Phys. 107 , 053710(2010)
[30]Walsh, A., Chen, S., Gong, X.G., Wei, S.H., AIP Conf. Proc., 63, 1399 (2011)
[31]Walsh, A., Chen, S., Wei, S., Gong, X., Adv. Energy Mater. 2 , 400-409(2012)
[32]Zhang, Y., Sun, X., Zhang, P., Yuan, X., Huang, F., Zhang, W., J. Appl. Phys. 111, 063709 (2012)
[33]Dudchak, I.V., Piskach, L.V., J. Alloy. Compd. 351, 145-150(2003)
[34]Das, S., Mandal, K.C., Jpn. J. Appl. Phys. 52,125502 (2013)
[35]Nagoya, A., Asahi, R., Wahl, R., Kresse, G., Phys. Rev. B 81, 113202 (2010)
[36]Chen, S.Y., Gong, X.G., Walsh, A., Wei, S.H., Appl. Phys. Lett. 96, 021902 (2010)
[37]Gödecke, T., Haalboom, T., & Ernst, F., Zeitschrift für Metallkunde, 91 ,622-634(2000)
[38] Persson, C., Lany, S., Zhao, Y.-J., Zunger, A., Phys. Rev. B72, 035211 (2005)
[39]Maeda, T., Nakamura, S., Wada, T., Jpn. J. Appl. Phys. 50, 04DP07 (2011)
[40]Redinger, A., Berg, D.M., Dale, P. J., Djemour, R., Gütay, L., Eisenbarth, T., Valle, N., Siebentritt, S., IEEE J. Photovoltaics 1, 200-206 (2011)
[41]Redinger, A., H ö nes, K., Fontan é , X., Izquierdo-Roca, V., Saucedo, E., Valle, N.,P é rez-Rodr í guez, A., Siebentritt, S., Appl. Phys. Lett. 98, 101907(2011)
[42]I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, Sol. Energy Mater. Sol. Cells, 101, 154-159(2012)
[43]H. S. Duan, W. Yang, B. Bob, C. J. Hsu, B. Lei, Y. Yang, Adv. Funct. Mater.,23, 1466-1471(2013)
[44]Siebentritt, S., Schorr, S., Photovoltaics Res. Appl. 20, 512-519(2012)
[45]Nagoya, A., Asahi, R., Wahl, R., Kresse, G., Phys. Rev. B 81 (2010) 113202
[46]Chen, S., Yang, J.-H., Gong, X.G., Walsh, A., Wei, S.-H., Phys. Rev. B 81, 245204(2010)
[47] Maeda, T., Nakamura, S., Wada, T., Jpn. J. Appl. Phys. 50 (2011) 04DP07
[48]Siebentritt, S., Igalson, M., Persson, C., Lany, S., Photovoltaics Res. Appl. 18390–410 (2010)
[49]Nagoya, A., Asahi, R., Kresse, G., J. Phys. Condens. Matter, 23, 404203 (2011)
[50]Chen S., Walsh A., Gong X.-G., Wei S.-H., Adv. Mater. 25, 1522-1539 (2013)
[51]Zhai, Y.-T., Chen, S., Yang, J.-H., Xiang, H.-J., Gong, X.-G., Walsh, A., Kang, J., Wei, S.- H., Phys. Rev. B 84, 075213 (2011)
[52]Tanaka, T., Nagatomo, T., Kawasaki, D., Nishio, M., Guo, Q.X., Wakahara, A., Yoshida, A., Ogawa, H., J. Phys. Chem. Solids 66, 1978-1981 (2005)
[53]Leitao, J.P., Santos, N.M., Fernandes, P.A., Salome, P.M.P., da Cunha, A.F., Gonzalez, J.C., Ribeiro, G.M., Matinaga, F.M., Phys. Rev. B 84, 024120 (2011)
[54]Katagiri H., Saitoh K., Washio T., Shinohara H., Kurumadani T., Miyajima S., Sol. Energy Mater. Sol. Cells 65, 141-148 (2001)
[55]Wibowo, R. A., Kim, W. S., Lee, E.S., Munir, B., Kim, K. H., J. Phys. Chem. Solids 68, 1908-1913 (2007)
[56]Wibowo, R.A., Lee, E.S., Munir, B., Kim, K.H., Phys. Status Solidi A 204, 3373-3379 (2007)
[57]Repins, I., Vora, N., Beall, C., Wei, S.-H., Yan, Y., Romero, M., Teeter, G., Du, H., To, B., Young, M., Noufi, R., In, MRS proceedings, 1324 (2011)
[58] Schorr, S., Hoebler, H.J., Tovar, M., Eur. J. Mineral.,19, 65-73(2007)
[59]Washio, T., Nozaki, H., Fukano, T., Motohiro, T., Jimbo, K., Katagiri, H., J. Appl. Phys. 110, 074511 (2011)
[60]Nagoya, A., Asahi, R., Wahl, R., Kresse, G., Phys. Rev. B 81, 113202 (2010)
[61]Chen, S.Y., Gong, X.G., Walsh, A., Wei, S.H., Appl. Phys. Lett. 96, 021902 (2010)
[62]Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S.J., Bojarczuk, N.A., Mitzi, D., Guha, S., Appl. Phys. Lett., 97,143508 (2010)
[63]K. Chopra, P. Paulson, V. Dutta, Renewable Energy, 8 , 375-379 (1996)
[64]Andrew F., Xavier F., Victor I.-R., Moises E.-R., Simon L.-M., Marcel Placidi, Lorenzo C.-B., Sol. Energy Mater. Sol. Cells, 112, 97-105 (2013)
[65]D.-H. Son, D.-H. Kim, S.-N. Park, K.- J. Yang, D. Nam, H. Cheong, and J.-K. Kang , Chem. Mater., 27 (15) ,5180-5188 (2015)
[66]X. Yin, C. Tang, L. Sun, Z. Shen, and H. Gong, Chem. Mater., 26 (6),2005-2014 (2014)
[67]S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Adv. Mater., 25, 1522-1539 (2013)
[68]H. S. Duan, W. Yang, B. Bob, C. J. Hsu, B. Lei, Y. Yang, Volume 23, Issue 11March 20, 1466-1471(2013)
[69]F. Liu, F. Zeng, N. Song, L. Jiang, Z. Han, Z. Su, C. Yan,X.Wen, Xiaojing Hao, and Y. Liu , J. Mater. Chem., 2(2), 500-509 (2014)
[70]Jonathan J. Scragg, Tove E., Tomas K., Marika E., and Charlotte P.-B., Chem. Mater., 23 (20), 4625–4633 (2011)
[71] A. Weber, R. Mainz, H. W. Schock, J. Appl. Phys. 107, 013516 (2010)
[72]Fairbrother, A., Fontane ́, X., Izquierdo-Roca, V., Espíndola-Rodríguez, M., Lo ́ pez-Marino, S., Placidi, M., Calvo-Barrio, L., Pe ́ rez-Rodríguez, A., Saucedo, E. Sol. Energy Mater. Sol. Cells, 112, 97 −105 (2013)
[73]D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells, 95, 1421-1436 (2011)
[74]X. Fontane´, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pe´rez-Rodriguez, J. R. Morante, D.M. Berg, P.J. Dale, S. Siebentritt, Appl. Phys. Lett. 98, 181905 (2011)
[75]A. Fairbrother, E. Garcı´a-Hemme, V. Izquierdo-Roca, X. Fontane!, F.A. Pulgarı´n-Agudelo, O. Vigil-Gala!n, A. Pe!rez-Rodrı´guez, E. Saucedo, J. Am. Chem. Soc., 134, 8018-8021 (2012)
[76]Vigil-Gala ́ n, O., Espíndola-Rodríguez, M., Courel, M., Fontane ́ ,X., Sylla, D., Izquierdo-Roca, V., Fairbrother, A., Saucedo, E., Pe ́ rez-Rodríguez, A. Sol. Energy Mater. Sol. Cells, 117,246 - 250 (2013)
[77]Mendis, B. G., Goodman, M. C. J., Major, J. D., Taylor, A. A., Durose, K., Halliday, D. P. J. Appl. Phys., 112,124508 (2012)
[73]Lee, K. D., Seo, S.-W., Lee, D.-K., Kim, H., Jeong, J.-h., Ko, M.J., Kim, B., Kim, D. H., Kim, J. Y. Thin Solid Films, 546, 294 −298 (2013)
[74]Redinger A., Mousel M., Djemour R., Gutay L., Valle N., Siebentritt S. Prog. Photovoltaics: Res. Appl., 22, 51 – 57 (2014)
[75]Fairbrother, A., García-Hemme, E., Izquierdo-Roca, V., Fontane ́ , X., Pulgarín-Agudelo, F. A., Vigil-Gala ́ n, O., Pe ́ rez-Rodríguez, A., Saucedo, E. J. Am. Chem. Soc., 134,8018-8021 (2012)
[76]Haibing X., Yudania S. , Simón L.-M. , Moisés E.-Rodríguez†, Markus N., Diouldé S., Andrew F. , Victor I.-R. , Alejandro P.-R., and Edgardo S, ACS Appl. Mater. Interfaces, 6 (15), 12744-12751 (2014)
[77]X. Zhu, Z. Zhou, Y. Wang, L. Zhang, A. Li, and F. Huang, Sol. Energy Mater. Sol. Cells 101, 57 (2012)
[78]Shin, B. et al., Prog.Photovolt: Res. Appl. 21, 72-76 (2013)
[79]Siebentritt, S. &Schorr, S. Kesterites—a challenging material for solar cells. Prog. Photovolt: Res. Appl. 20, 512-519 (2012)
[80]J. Scragg, J. W€atjen, M. Edoff, T. Ericson, T. Kubart, and C. Platzer-Bj€orkman, J. Am. Chem. Soc. 134(47), 19330 (2012)
[81]S. Lopez-Marino, M. Placidi, A. Perez-Tomas, J. Llobet, V. Izquierdo-Roca, X. Fontane, A. Fairbrother, M. Espındola-Rodrıguez, D. Sylla, A.Perez-Rodrıguez, and E. Saucedo, J. Mater. Chem. A 1, 8338 (2013)
[82]Scragg, J. J., Ericson, T., Kubart, T., Edoff, M., Platzer-Bjorkman, C. Chem. Mater., 23, 4625 (2011)
[83] Pedro M. P. Salome´ , Paulo A. Fernandes, Joaquim P. Leita˜o , Marta G. Sousa , Jennifer P. Teixeira , Anto´nio F. da Cunha, J. Mater. Sci. Lett. 49, 7425-7436 (2014)
[84]D. Parkg, Thin Solid Films, 519, 7386 (2011)
[85]S. W. Shin, Sol. Energy Mater. Sol. Cells, 95, 3202(2011)
[86]M. Grossberg, Thin Solid Films, 519, 8403(2011)
[87]G. Perna, Appl. Phys. A, 83, 127(2006)
[88]Chandrasekhar, H. R.; Phys. Rev. B, 15, 2177 - 2183 (1977)
[89]M. Altosaar, Physica Status Solidi A Applications and Material Science, 205,167 ( 2008)
[90]J. B. Li, V. Chawla and B. M. Clemens, Adv. Mater., 24, 720–723(2012)
[91]D. Azulay, O. Millo, I. Balberg, H.-W. Schock, I. Visoly-Fisher and D. Cahen, Sol. Energy Mater. Sol. Cells, 91, 85-90 (2007)
[92] I. Visoly-Fisher, S. Cohen, A. Ruzin, D. Cahen, Adv. Mater., 16,879 (2004)
[93]X. Fontane, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale and S. Siebentritt, Appl. Phys. Lett., 98, 181905 (2011)
[94]J. Han, S. W. Shin, M. G. Gang, J. H. Kim and J. Y. Lee, Nanotechnology, 24, 095706 (2013)
[95]S. A. Vanalakar, G. L. Agawane, A. S. Karnble, C. W. Hong, P. S. Patil and J. H. Kim, Sol. Energy Mater. Sol. Cells, 138, 1-8 (2015)
[96]M. Umehara, Y. Takeda, T. Motohiro, T. Sakai, H. Awano and R. Maekawa, Appl. Phys. Express, 6,045501( 2013)
[97]J. Scragg, J. W€atjen, M. Edoff, T. Ericson, T. Kubart, and C. Platzer-Bjorkman, J. Am. Chem. Soc. 134(47), 19330 (2012)
[98]Haibing X., Yudania S. , Simón L.-M. , Moisés E.-Rodríguez, Markus N., Diouldé S., Andrew F. , Victor I.-R. , Alejandro P.-R., and Edgardo S, ACS Appl. Mater. Interfaces, 6 (15), 12744-12751 (2014)
[99] Siebentritt S., Schorr S., Prog. Photovoltaics Res. Appl. 20, 512-519(2012)
[100]B. Shin, N. A. Bojarczuk, and S. Guha, Appl. Phys. Lett. 102(9), 091907 (2013)
[101]Mitzi D. B., Gunawan O., Todorov T. K., Wang K., Guha S., Sol. Energy Mater. Sol. Cells 95, 1421-1436 (2011)
[102]Redinger, A., Berg, D.M., Dale, P.J., Djemour, R., Gütay, L., Eisenbarth, T., Valle, N., Siebentritt, S., IEEE J. Photovoltaics 1, 200-206(2011)
[103]H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang,Cryst. Eng. Commun., 13 ,2222 (2011)
[104]M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik,Thin Solid Films, 519, 7403. (2011)
[105]S. Chen, A. Walsh, J. Yang, X.G. Gong, L. Sun, P.X. Yang, J.H. Chu, S.H. Wei,Phys. Rev. B, 83, 125201 (2011)
[106]X. Yin, C. Tang, L. Sun, Z. Shen, H. Gong, Chem. Mater., 26(6), 2005-2014 (2014)
[107]Duan, H.-S., Yang, W., Bob, B., Hsu, C.-J., Lei, B., Yang, Y., Adv. Funct. Mater., 23,1466-1471 (2013)
[108]Mitzi D. B., Gunawan O., Todorov T. K., Wang K., Guha S., Energy Mater. Sol. Cells, 95, 1421-1436 (2011)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top