(3.215.183.251) 您好!臺灣時間:2021/04/23 12:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭佑禛
論文名稱:乳酸桿菌對新鮮鳳梨及香蕉或苦瓜發酵液添加中藥之發酵及其抗氧化活性研究
論文名稱(外文):Anti-Oxidant Effects of Lactobacillus-Fermented Fresh Pineapples and Bananas or Bitter Melon Ferment Supplemented with Traditional Chinese Medicine
指導教授:魏佳俐魏佳俐引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生化科技學系研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:鳳梨香蕉苦瓜乳酸菌發酵抗氧化
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為利用乳酸菌發酵提升蔬果及中藥的產品價值及抗氧化活性,本研究首先以試量產的規格(600 kg),接種5次Lactobacillus plantarum LP2(107 CFU/g)於僅含有新鮮鳳梨(50%)及香蕉(30%)的控制組(G1C),以及除含有鳳梨(42%)及香蕉(25%),另添加紅棗及百合(G1JL)或酸棗仁、遠志及茯苓(G1TSR)的中藥組合(16%)。G1JL及G1TSR在室溫發酵29週後,仍分別還有104 CFU/ml及105 CFU/ml以上的乳酸菌量。相較於沒有乳酸菌存活的G1C,顯示這2個中藥組合對乳酸菌具有促進生長或維持生存的功效。其中發酵效果較佳的G1TSR,其發酵29週與發酵1週相比,還原糖和總醣含量分別降低39%和69%,總酚含量和ABTS自由基清除力則分別提升1.6和1.5倍。
我們接著以實驗室規格(300 ml),分別接種Lactobacillus paracasei YM548(108 CFU/ml)於僅含有發酵11個月之苦瓜液(50%;pH 6.5;MB)或再添加遠志浸膏(5%)之苦瓜液(MPB)。在30℃下,發酵2天的MB及MPB即可使pH降至4.4以下並提高乳酸菌數達109 CFU/ml。發酵7天的MPB在還原糖、總醣和粗三萜含量上,分別降低69%、58%和32%,類黃酮則增加1.8倍。這些結果不僅沒有在未接種乳酸菌的控制組M及MP發現,其更甚於MB之類黃酮增加量,顯示此乳酸菌與遠志浸膏對苦瓜液的再發酵具有加成效果。
本研究提供兩種蔬果添加中藥之乳酸菌發酵模式,其顯著的乳酸菌含量和抗氧化能力,能提供廠商研發對人體有益之天然保健飲品。
中文摘要 i
英文摘要(Abstract) iii
壹、 前言 1
一、 自由基 1
二、 抗氧化物機制 2
三、 天然抗氧化物 3
(一)、多酚類 3
(二)、類黃酮 4
(三)、三萜類 4
四、 益生菌 5
(一)、益生菌 5
(二)、乳酸菌 6
五、 蔬果 8
(一)、鳳梨 8
(二)、香蕉 8
(三)、苦瓜 9
六、 中藥 10
(一)、紅棗 10
(二)、百合 10
(三)、酸棗仁 11
(四)、遠志 11
(五)、茯苓 12
七、 蔬果發酵 12
貳、 研究動機與策略 13
參、 材料與方法 14
一、 實驗材料 14
(一)、化學藥品與酵素 14
(二)、儀器 16
(三)、乳酸菌株 17
(四)、培養基及化學試劑製備法 17
二、 實驗方法 21
(一)、G1試量產發酵製備 21
(二)、G2苦瓜液再發酵製備 22
(三)、菌數計數 23
(四)、一般營養成分分析 23
(五)、抗氧化活性及成分分析 24
(六)、統計分析 28
肆、結果 29
一、G1試量產發酵之微生物菌數與PH值分析 29
(一)、乳酸菌數及PH值 29
(二)、酵母菌與黴菌數 30
(三)、總生菌數 31
(一)、還原糖含量 33
(二)、總醣含量 33
二、G1試量產發酵之抗氧化活性 34
(一)、總酚含量 35
(二)、DPPH自由基清除力 35
(三)、ABTS自由基清除力 36
四、G2苦瓜液再發酵之乳酸菌數與PH值分析 37
五、G2苦瓜液再發酵之營養成分分析 38
(一)、還原糖含量 38
(二)、總醣含量 39
六、G2苦瓜液再發酵之抗氧化成分及活性分析 40
(一)、總酚含量 40
(二)、類黃酮含量 40
(三)、粗三萜含量 41
(四)、DPPH自由基清除力 42
(五)、ABTS自由基清除力 43
伍、討論 45
陸、參考文獻 51
柒、圖表 58
1. Davies, K.J.A., Oxidative stress: the paradox of aerobic life. Biochemical Society Symposium, 1995. 61: 1-31.
2. Chaudière, J. and R. Ferrari-Iliou, Intracellular Antioxidants: from Chemical to Biochemical Mechanisms. Food and Chemical Toxicology, 1999. 37: 949-962.
3. Yildirim, A., et al., Dehydroepiandrosterone Improves Hepatic Antioxidant Systems after Renal Ischemia-Reperfusion Injury in Rabbits. Annals of Clinical & Laboratory Science, 2003. 33: 459-464.
4. Frankel, E.N., Antioxidants in lipid foods and their impact on food quality. Food Chemistry, 1996. 57: 51-55.
5. 蘇正德和陳正雄。新編食品化學,2001。華格企業:台中。
6. Nahas, R.I., 5 - Natural antioxidants as food and beverage ingredients, in Natural Food Additives, Ingredients and Flavourings, D. Baines and R. Seal, Editors. 2012, Woodhead Publishing. 100-126.
7. Ferguson, L.R., Role of plant polyphenols in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001. 475: 89-111.
8. Sahu, S.C. and G.C. Gray, Lipid peroxidation and dna damage induced by morin and naringenin in isolated rat liver nuclei. Food and Chemical Toxicology, 1997. 35: 443-447.
9. Hayatsu, H., et al., Suppression of genotoxicity of carcinogens by (−)-epigallocatechin gallate. Preventive Medicine, 1992. 21: 370-376.
10. Hertog, M.G.L., et al., Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The Lancet, 1993. 342: 1007-1011.
11. Hertog, M.G., et al., Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. The American Journal of Clinical Nutrition, 1997. 65:1489-1494.
12. Pinent, M., et al., Grape Seed-Derived Procyanidins Have an Antihyperglycemic Effect in Streptozotocin-Induced Diabetic Rats and Insulino mimetic Activity in Insulin-Sensitive Cell Line. Endocrinology, 2004. 145:4985-4990.
13. Williams, R.J., J.P.E. Spencer, and C. Rice-Evans, Flavonoids: antioxidants or signalling molecules? Free Radical Biology and Medicine, 2004. 36: 838-849.
14. 李順來。台灣國寶-牛樟芝。2011。世茂出版:新北市。
15. Smania, E.F.A., et al., Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia, 2003. 74: 375-377.
16. Jiang, J., et al., Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-κB signaling. International Journal of Molecular Medicine, 2008. 21: 577-584.
17. Fuller, R., Probiotics in man and animals. Journal of Applied Bacteriology, 1989. 66: 365-378.
18. Reid, G., The importance of guidelines in the development and application of probiotics. Current Pharmaceutical Design, 2005. 11: 11-16.
19. Sarrela, M., et al., Gut bacteria and health foods ¾ the European perspective. International Journal of Food Microbiology, 2002. 78: 99-117.
20. Bocci, V., et al., What is the role of cytokines in human colostrum. Journal Of Biological Regulators & Homeostatic Agents, 1991. 5:121-124.
21. Buckenhuskes, H.J., Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. Federation of European Microbiological Societies Microbiology Ecology, 1993. 12: 253-271.
22. Carr, F.J., D. Chill, and N. Maida, The lactic acid bacteria: a literature survey. Critical Reviews in Microbiology, 2002. 28: 281-370.
23. Pederson, C.S., A Study of the Species Lactobacillus plantarum (Orla-Jensen) Bergey et al. Journal of Bacteriology, 1936. 31: 217-224.
24. Russo, P., et al., Fresh-Cut Pineapple as a New Carrier of Probiotic Lactic Acid Bacteria. Hindawi Publishing Corporation, 2014. 309183.
25. Luana, N., et al., Manufacture and characterization of a yogurt-like beverage made with oat flakes fermented by selected lactic acid bacteria. International Journal of Food Microbiology, 2014. 185: 17-26.
26. 蔡精強和黃碧海。鳳梨產銷改進與發展。台灣鳳梨品種改良與病蟲害管理研討會專刊,2001。21~30。
27. 李倩雲。香蕉組織培養苗之培育及技術改進。台灣省台中區農業改良場:台中,1997。155-162。
28. Lim, Y.Y., T.T. Lim, and J.J. Tee, Antioxidant properties of several tropical fruits: a comparative study. Food Chemistry, 2007. 103: 1003-1008.
29. Someya, S., Y. Yoshiki, and K. Okubo, Antioxidant compounds from bananas (Musa Cavendish). Food Chemistry, 2002. 79: 351-354.
30. Wall, M.M., Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. Journal of Food Composition and Analysis, 2006. 19: 434-445.
31. Hardisson, A., et al., Mineral compositions of the banana (Musa acuminata) from the island of Tenerife. Food Chemistry, 2001. 73: 153-161.
32. Leterme, P., et al., Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chemistry, 2006. 95: 644-652.
33. Emaga, T.H., et al., Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chemistry, 2007. 103: 590-600.
34. Kondo, S., M. Kittikorn, and S. Kanlayanarat, Preharvest antioxidant activities of tropical fruit and the effect of low temperature storage on antioxidants and jasmonates. Postharvest Biology and Technology, 2005. 36: 309-318.
35. Kim, H.Y., et al., The Butanol Fraction of Bitter Melon (Momordica charantia) Scavenges Free Radicals and Attenuates Oxidative Stress. Preventive Nutrition and Food Science, 2013. 18: 18-22.
36. Pawar, R.S., et al., Updates on chemical and biological research on botanical ingredients in dietary supplements. Analytical and Bioanalytical Chemistry, 2013. 405: 4373–4384.
37. Popovich, D.G., L. Li, and W. Zhang, Bitter melon (Momordica charantia) triterpenoid extract reduces preadipocyte viability, lipid accumulation and adiponectin expression in 3T3-L1 cells. Food and Chemical Toxicology, 2010. 48: 1619-1626.
38. Basch, E., S. Gabardi, and C. Ulbricht, Bitter melon (Momordica charantia): a review of efficacy and safety. American Journal of Health-System Pharmacy, 2003. 60: 356-9.
39. Tsai, T.-Y., et al., Atherosclerosis-Preventing Activity of Lactic Acid Bacteria-Fermented Milk−Soymilk Supplemented with Momordica charantia. Journal of Agricultural and Food Chemistry, 2009. 57: 2065-2071.
40. 張延英、楊建英和王蕭琴。臨澤紅棗對小鼠腹腔巨噬功能的影響。甘肅中醫學院學報,1995。12:50-51。
41. 張清安等人。紅棗汁降血之保健作用研究。食品科技,2003。24:138-140。
42. 張慶等人。三種大棗多醣促進小鼠脾細胞增殖作用的比較。第一軍醫大學學報,1999。19: 398。
43. Lee, S.-M., et al., Anti-complementary activity of triterpenoides from fruits of Zizyphus jujuba. Biological and Pharmaceutical Bulletin, 2004. 27: 1883-1886.
44. Zhao, Z., et al., Structures and immunological activities of two pectic polysaccharides from the fruits of Ziziphus jujuba Mill. cv. Jinsixiaozao Hort. Food Research International, 2006. 39: 917-923.
45. 雷昌貴、陳錦屏和盧大新。紅棗的營養成分及其保健功能。現代生物醫學進展,2006。3:56-57。
46. Xinrong, Y., et al., Dictionary of Traditional Chinese Medicine. 1997, Shangha: Shanghai Renmin Press.
47. Mimaki, Y., Steroidal saponins from the bulbs of lilium candidum. Phytochemistry, 1999. 51: 567-573.
48. Lin-sha, Y., S. Yan-hong, and F. Xiao-yan., Research progress in Chinese medicine Bulbus Lilii. Henan Journal of Traditional Chinese Medicine and Pharmacy, 2002. 17: 74-75.
49. Mimaki , Y., et al., New steroidal constituents from the bulbs of lilium candidum. . Chemical and Pharmaceutical Bulletin, 1998. 46: 1829-1832.
50. 顏正華。中藥學(下冊),1991。知音出版社:台北。671-673。
51. 吳數勛等人。酸棗(仁、葉、肉)與酸棗仁皂甙A對中樞神經系統作用的實驗研究。中國中醫藥雜誌,1993。18:685-687。
52. Liu, P., et al., Potential antidepressant properties of Radix Polygalae (Yuan Zhi). Phytomedicine, 2010. 17: 794–799.
53. Hu, Y., et al., Antidepressant effects of the extract YZ-50 from Polygala tenuifolia in chronic mild stress treated rats and its possible mechanisms. Pharmaceutical Biology, 2010. 48: 794–800.
54. Shi, T., et al., Isolation of flavonoids from the aerial parts of Polygala tenuifolia Willd. and their antioxidant activities. Journal of Chinese Pharmaceutical Sciences, 2013. 22: 36-39.
55. Wang, Y.Z., et al., Mycology, cultivation, traditional uses, phytochemistry and pharmacology of Wolfiporia cocos (Schwein.): a review. Journal of Ethnopharmacology, 2013. 147: 265~276.
56. Ling, Y., et al., Systematic screening and characterization of the major bioactive components of Poria cocos and their metabolites in rats by LC-ESI-MS(n). Biomedical Chromatography, 2012. 26: 1109-1117.
57. Wood, B.J.B., Microbiology of Fermented Foods(1st ed). 2006, US: Springer.
58. Bosma-den Boer, M.M., M.-L. van Wetten, and L. Pruimboom, Chronic inflammatory diseases are stimulated by current lifestyle: how diet, stress levels and medication prevent our body from recovering. Nutrition & Metabolism, 2012. 9: 1-14.
59. Su, N.-W., et al., Effects of Temperature and Sodium Chloride Concentration on the Activities of Proteases and Amylases in Soy Sauce Koji. Journal of Agricultural and Food Chemistry, 2005. 53: 1521–1525.
60. DuBois, M., et al., Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 1956. 28: 350–356.
61. Payet, B., A.S.C. Sing, and J. Smadja, Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents. Journal of Agricultural and Food Chemistry, 2005. 53: 10074-9.
62. Chang, C.-C., et al., Estimation of Total Flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 2002. 10: 178-182.
63. Chang, C.L., C.S. Lin, and G.H. Lai, Phytochemical characteristics, free radical scavenging activities, and neuroprotection of five medicinal plant extracts. Evidence-Based Complementary and Alternative Medicine, 2012. 984295.
64. Nagmoti, D.M. and A.R. Juvekar, In vitro inhibitory effects of Pithecellobium dulce (Roxb.) Benth. seeds on intestinal α-glucosidase and pancreatic α-amylase. Journal of Biochemical Technology, 2013. 4: 616-621.
65. Girennavar, B., et al., Radical scavenging and cytochrome P450 3A4 inhibitory activity of bergaptol and geranylcoumarin from grapefruit. Bioorganic & Medicinal Chemistry, 2007. 15: 3684-3691.
66. Re, R., et al., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 1999. 26: 1231-1237.
67. Moore, J., et al., Effects of solid-state yeast treatment on the antioxidant properties and protein and fiber compositions of common hard wheat bran. Journal of Agricultural and Food Chemistry, 2007. 55: 10173-82.
68. Ratnam, D.V., et al., Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. Journal of Controlled Release, 2006. 113: 189-207.
69. Connolly, J.D. and R.A. Hill, Triterpenoids. Natural Product Reports, 2001. 18: 560-578.
70. Ksebati, M.B., F.J. Schmitz, and S.P. Gunasekera, Pouosides A-E, Novel Triterpene Galactosides from a Marine Sponge, Asteropus sp. . American Chemical Society, 1988. 53: 3917-3921
71. Barrero, A.F., et al., First synthesis of achilleol A using titanium(III) chemistry. Tetrahedron Letters, 2002. 43: 2793–2796.
72. Lee, J.-H., et al., Trolox inhibits osteolytic bone metastasis of breast cancer through both PGE2-dependent and independent mechanisms. Biochemical Pharmacology, 2014. 91: 51-60.
73. Yamaguchi, T., et al., HPLC Method for Evaluation of the Free Radical-scavenging Activity of Foods by Using 1,1-Diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry, 1998. 62: 1201-1204.
74. Musa, K.H., A. Abdullah, and A. Al-Haiqi, Determination of DPPH free radical scavenging activity: Application of artificial neural networks. Food Chemistry, 2016. 194: 705-711.
75. Schaich, K.M., X. Tian, and J. Xie, Reprint of “Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays”. Journal of Functional Foods, 2015. 18, Part B: 782-796.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔