(3.231.166.56) 您好!臺灣時間:2021/03/08 11:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊博旭
研究生(外文):YANG BO-HSU
論文名稱:探討AMPK活化劑調控人類大腸癌細胞MSH2與XRCC1表現進而增加化療藥物敏感性之分子機轉
論文名稱(外文):Molecular mechanism on regulation of MSH2 and XRCC1 expression by AMPK agonist to enhance cytotoxicity of chemotherapy drugs in human colorectal cancer cells
指導教授:陳政男陳政男引用關係
指導教授(外文):Cheng-Nan Chen
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生化科技學系研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:大腸癌益樂鉑服樂癌DNA修復系統
外文關鍵詞:Colorectal cancerAMPKOxaliplatin5-FluorouracilMSH2XRCC1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
大腸癌在全世界的癌症發生率排名第三高。在台灣衛福部的統計資料顯示,目前國人癌症致死率大腸癌排第三名。
AMP-activate protein kinase (AMPK)是維持細胞能量平衡之重要調節因子,近年來研究發現,AMPK 活化不只可以當能量調解的角色,也可以抑制細胞的生長;AMPK 活化可以減緩癌細胞的生長。
常用的大腸直腸癌化學治療藥物包括5-Fluorouracil (5-FU)、Oxaliplatin (OXR)等,已經有研究提出,癌細胞對於5-FU或OXR產生抗藥性的機制,這些機制包括了增強DNA修復的能力並阻止細胞凋亡產生,而DNA修補蛋白如MSH2或是XRCC1表現量較高時,對於會造成細胞毒性的藥物會產生抗藥性。
本論文主要探討在大腸癌細胞株中,AMPK活化劑AICAR增強5-FU或OXR所誘導的細胞毒性作用的影響。發現將大腸癌細胞株處理5-FU或OXR,會提高Akt的磷酸化,並增加MSH2及XRCC1表現,若將AICAR和這兩個化療藥物合併處理,會協力降低MSH2及XRCC1蛋白質表現量。期望在未來大腸癌的治療上能提供更好的方法與研究方向。

關鍵字: 大腸癌、AMPK、5-FU、OXR、MSH2、XRCC1、 AICAR
Colorectal cancer is the third most commonly diagnosed cancer in the world and the third leading cause of cancer mortality in Taiwan.
AMP-activate protein kinase (AMPK) is the important mediation energy sensing factor in human cell. The recent studies found that AMPK is not only a regulator of energy but also an inhibitor of cell growth. Activation of AMPK could slow down growth of cancer cell.
Chemotherapy has been the mainstay approach for patients with advanced colorectal cancer. 5-Fluorouracil (5-FU) and Oxaliplatin (OXR) are the active anticancer agents available to treat advanced colorectal cancer. In eukaryotes, MSH2 or XRCC1 is the key enzymes of DNA repair systems. High level of MSH2 or XRCC1 expression is resistant to cytotoxic agents.
In this proposal, we investigated the effect of AMPK activator AICAR on enhancing the 5-FU or OXR-induced cytotoxicity in colorectal cancer (CRC) cells.
Our preliminary results showed that exposure of human CRC cell line HCT-116 to 5-FU or OXR could increase protein levels of phosphorylated Akt, and increased expression of DNA repair genes MSH2 and XRCC1.
We also observed that the combined treatment of AICAR and these two chemotherapy drugs induced synergistic reduction protein levels of MSH2 and XRCC1.
Our study will further investigate the molecular mechanisms on regulation of MSH2 and XRCC1 expression by AMPK agonist to enhance cytotoxicity of chemotherapy drugs in human colorectal cancer cells.

Key words : Colorectal cancer , AMPK , 5-FU , OXR , MSH2 , XRCC1, AICAR
中文摘要 ………..…………………………………….. Ⅰ
英文摘要 ..…………………………………………….. Ⅱ
致謝 ..…………………………………………….. Ⅲ
目錄 …..………………………………………….. Ⅳ
圖目錄 ………………..…………………………….. Ⅶ
1. 大腸直腸癌 (Colorectal Cancer) 1
1-1大腸直腸癌成因 1
(The cause of Colorectal Cancer
1-2大腸直腸癌的病理特徵 2
(pathophysiology of Colorectal Cancer)
1-3大腸直腸癌的治療 3
(Treament of Colorectal Cancer)
2. 化療藥物Oxaliplatin (OXR)與5-fluororacil (5-FU) 3
2-1 Oxaliplatin (OXR) 4
2-2 5-fluororacil (5-FU) 4
3. DNA修補(DNA repair) 5
3-1 DNA修補方式 (DNA repair manner) 5
3-2 DNA錯誤配對修復系統 5
(DNA mismatch repair system, MMR )
3-3 鹼基切除修復(Base excision repair, BER) 6
4. AMP-activated protein kinase (AMPK) 7
5. p38及Akt訊息傳遞路徑(p38 & Akt pathway) 8
6. PI3K/Akt pathway 9
7. 研究動機 (Research Motive) 9
第二章 材料與方法 (Materials and Methods)
2-1 實驗材料與試劑 10
A.細胞株 10
B.藥品及材料 10
2-1-2實驗材料配方 14
A.細胞培養 14
B.細胞存活率分析 14
C.基因表現量分析 15
D.蛋白表現量分析 15
2-2 實驗器材 16
A.細胞培養 16
B.細胞存活率分析 16
C.基因表現量分析 16
D.蛋白表現量分析 16
2-3實驗方法 17
A.細胞培養 17
B.細胞存活率分析 18
C.基因表現量分析 19
D.蛋白表現量分析 25
第三章 結果 (Results)
3-1 OXR與5-FU抑制大腸癌細胞株HCT-116的生長 28
3-2 OXR與5-FU刺激HCT-116細胞中DNA修補基因MSH2及XRCC1表現 28
3-3 利用MAPKs抑制劑和PI3K/Akt抑制劑,探討OXR及5-FU誘導MSH2和
XRCC1基因表現 29
3-4 MAPKs抑制劑處理HCT-116細胞,OXR和5-FU對細胞存活率的表現 29
3-5 OXR與5-FU刺激HCT-116細胞中MSH2和XRCC1蛋白表現 30
3.6 AMPK活化劑AICAR與OXR和5-FU協同作用抑制HCT-116細胞生長 29
3.7 AMPK活化劑AICAR與OXR和5-FU協同作用下抑制HCT-116細胞中MSH2及XRCC1基因表現 29
第四章 討論 (Disscussion) 32
結論(Conclusions) 38
參考文獻 39
圖 47
附錄 60
1."Colon Cancer Treatment (PDQ®)". NCI. 2014-05-12.
Retrieved 29 June 2014
2.Alastair J.M. Watson, Paul D. Collins. " Colon Cancer: A Civilization Disorder." Dig Dis 2011;29:222–228 DOI: 10.1159/000323926 PMID: 21734388
3.The World Health Report 2002: Reducing Risks, Promoting Healthy Life. Geneva, WHO, 2002.
4.Caperchione CM, Kolt GS, Mummery WK. " Physical activity in culturally and linguistically diverse migrant groups to Western society: a review of barriers, enablers and experiences." Sports Med 2009;39:167–177.
5.Coyle YM. "Lifestyle, genes, and cancer ".
Methods Mol Biol 2009;472:25–56:25–56.
6.Slattery ML. "Physical activity and colorectal cancer."
Sports Med 2004;34:239–252
7.Calton BA, Lacey J, Schatzkin A, Schairer C, Colbert LH, Albanes D, et al. "Physical activity and the risk of colon cancer among women: a prospective cohort study (United States). "Int J Cancer 2006;119:385–391
8.Larsson SC, Rutegård J, Bergkvist L, Wolk A. "Physical activity, obesity, and risk of colon and rectal cancer in a cohort of Swedishmen." Eur J Cancer 2006;42:2590–2597
9.Friedenreich C, Norat T, Steindorf K, Boutron-Ruault MC, Pischon T, Mazuir M, et al. "Physical activity and risk of colon and rectal cancers: The European Prospective Investigation into Cancer and Nutrition." Cancer Epidemiol Biomarkers Prev 2006;15:2398– 2407
10.Lee KJ, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S. "Physical activity and risk of colorectal cancer in Japanese men and women: the Japan Public Health Centerbased prospective study. " Cancer Causes Control 2007;18:199–209.
11.Lin OS. "Acquired risk factors for colorectal cancer. "
Methods Mol Biol 2009;472:361–372.
12.Su HX, Zhou HH, Wang MY, Cheng J, Zhang SC, Hui F, Chen XZ, Liu SH, Liu QJ, Zhu ZJ, Hu QR, Wu Y, Ji SR. Mutations of C-reactive protein (CRP) -286 SNP, APC and p53 in colorectal cancer: implication for a CRP-Wnt crosstalk. PLoS One. 2014; 9(7):e102418.
13.Renkonen E, Zhang Y, Lohi H, Salovaara R, Abdel-Rahman WM, Nilbert M, Aittomaki K, Jarvinen HJ, Mecklin JP, Lindblom A, Peltomaki P. Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer. J Clin Oncol. 2003; 21(19):3629-37.
14.Lee SH1, Kim WY1, Hwang DY1, Han HS. "Intraductal papillary mucinous neoplasm of the ileal heterotopic pancreas in a patient with hereditary non-polyposis colorectal cancer: A case report." World J Gastroenterol. 2015 Jul 7;21(25):7916-20. DOI:10.3748/WJG.V21.I25.7916. PMID: 26167093
15." American Joint Committee on Cancer (AJCC) – Cancer staging" https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx
16.衛生福利部統計處103年統計指標
17.Haslam DW, James WP (2005). "Obesity."Lancet (Review) 366 (9492): 1197–209.DOI:10.1016/S0140-6736(05)67483-1. PMID:16198769.
18.Lindner AU, Concannon CG, Boukes GJ, Cannon MD, Llambi F, Ryan D, Boland K, Kehoe J, McNamara DA, Murray F, Kay EW, Hector S, Green DR, Huber HJ, Prehn JH. Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy. Cancer Res. 2013; 73(2):519-28.
19.Wakasa K, Kawabata R, Nakao S, Hattori H, Taguchi K, Uchida J, Yamanaka T, Maehara Y, Fukushima M, Oda S. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells. PLoS One. 2015; 10(4):e0123076.
20.Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 2016; 16(1):20-33.
21.Martin SA, Lord CJ, Ashworth A. Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res. 2010; 16(21):5107-13.
22.Fishel R. Mismatch Repair. J Biol Chem. 2015; 290(44):26395-403.
23.Hassen S, Ali AA, Kilaparty SP, Al-Anbaky QA, Majeed W, Boman BM, Fields JZ,Ali N. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines. Mol Cell Biochem. 2016 Jan 4.PMID: 26728996.
24.Tóth C, Meinrath J, Herpel E, Derix J, Fries J, Buettner R, Schirmacher P,Heikaus S. Expression of the apoptosis repressor with caspase recruitment domain (ARC) in liver metastasis of colorectal cancer and its correlation with DNA mismatch repair proteins and p53. J Cancer Res Clin Oncol. 2015 Dec 31. PMID: 26721253.
25.Dutto I, Sukhanova M, Tillhon M, Cazzalini O, Stivala LA, Scovassi AI, Lavrik O, Prosperi E. p21CDKN1A Regulates the Binding of Poly(ADP-Ribose) Polymerase-1 to DNA Repair Intermediates. PLoS One. 2016 Jan 5;11(1):e0146031. doi:10.1371/journal.pone.0146031. eCollection 2016. PubMed PMID: 26730949.
26.Kubota Y, Nash RA, Klungland A, Schär P, Barnes DE, Lindahl T. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 1996 Dec 2;15(23):6662-70. PMID: 8978692
27.Zhang X, Moréra S, Bates PA, Whitehead PC, Coffer AI, Hainbucher K, Nash RA,Sternberg MJ, Lindahl T, Freemont PS. Structure of an XRCC1 BRCT domain: a new protein-protein interaction module. EMBO J. 1998 Nov 2;17(21):6404-11. PMID: 9799248
28.Nash RA, Caldecott KW, Barnes DE, Lindahl T. XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry. 1997 Apr 29;36(17):5207-11. PMID: 9136882.
29.Hanssen-Bauer A, Solvang-Garten K, Akbari M, Otterlei M. X-ray repair cross complementing protein 1 in base excision repair. Int J Mol Sci. 2012; 13(12):17210-29.
30.Hardie DG, Schaffer BE, Brunet A. AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends Cell Biol. 2015. pii: S0962-8924(15)00215-9.
31.Kefas BA, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D, Van de Casteele M. AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol. 2003 Apr;30(2):151-61. PMID: 12683939.
32.Dagon Y, Avraham Y, Berry EM. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun. 2006 Feb 3;340(1):43-7. Epub 2005 Dec 6. PMID: 16377306.
33.Garcia-Gil M, Pesi R, Perna S, Allegrini S, Giannecchini M, Camici M, Tozzi MG. 5'-aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience. 2003;117(4):811-20. PMID: 12654334.
34.Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T. Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol. 2004 May 15;67(10):2005-11. Erratum in: Biochem Pharmacol. 2005 Sep 15;70(6):968.PMID: 15130776.
35.Kefas BA, Heimberg H, Vaulont S, Meisse D, Hue L, Pipeleers D, Van de Casteele M. AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase. Diabetologia. 2003 Feb;46(2):250-4. Epub 2003 Feb 8. PMID: 12627324.
36.Griss T, Vincent EE, Egnatchik R, Chen J, Ma EH, Faubert B, Viollet B, DeBerardinis RJ, Jones RG. Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis. PLoS Biol. 2015; 13(12):e1002309.
37.Li NS, Zou JR, Lin H, Ke R, He XL, Xiao L, Huang D, Luo L, Lv N, Luo Z. LKB1/AMPK inhibits TGF-β1 production and the TGF-β signaling pathway in breast cancer cells. Tumour Biol. 2015 Dec 30.PMID:26718214
38.Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013; 513(1):1-13.
39.Coskun D, Obakan P, Arisan ED, Çoker-Gürkan A, Palavan-Ünsal N.Epibrassinolide alters PI3K/MAPK signaling axis via activating Foxo3a-induced mitochondria-mediated apoptosis in colon cancer cells. Exp Cell Res. 2015 Oct 15;338(1):10-21.doi: 10.1016/j.yexcr.2015.08.015. Epub 2015 Aug 28. PMID:26318418.
40.Hsiao PW, Chang CC, Liu HF, Tsai CM, Chiu TH, Chao JI. Activation of p38 mitogen-activated protein kinase by celecoxib oppositely regulates survivin and gamma-H2AX in human colorectal cancer cells. Toxicol Appl Pharmacol. 2007; 222(1):97-104.
41.Tolba MF, Abdel-Rahman SZ. Pterostilbine, an active component of blueberries, sensitizes colon cancer cells to 5-fluorouracil cytotoxicity. Sci Rep. 2015 Oct 16;5:15239. doi: 10.1038/srep15239.PMID: 26472352
42.Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 2015; 1855(1):104-21.
43.Graham J, Mushin M, Kirkpatrick P. Oxaliplatin. Nat Rev Drug Discov. 2004; 3(1):11-2.
44.Hochster H, Chachoua A, Speyer J, Escalon J, Zeleniuch-Jacquotte A, Muggia F. Oxaliplatin with weekly bolus fluorouracil and low-dose leucovorin as first-line therapy for patients with colorectal cancer. J Clin Oncol. 2003; 21(14):2703-7.
45.Shimamoto Y, Nukatsuka M, Takechi T, Fukushima M. Association between mRNA expression of chemotherapy-related genes and clinicopathological features in colorectal cancer: A large-scale population analysis. Int J Mol Med. 2015 Dec 10. doi: 10.3892/ijmm.2015.2427. PMID: 26676887.
46.Ahn JY, Lee JS, Min HY, Lee HY. Acquired resistance to 5-fluorouracil via HSP90/Src-mediated increase in thymidylate synthase expression in colon cancer. Oncotarget. 2015 Oct 20;6(32):32622-33. doi: 10.18632/oncotarget.5327. PMID: 26416450.
47.Lin L, Zhang Z, Zhang W, Wang L, Wang J. Roles of genetic variants in the PI3K/PTEN pathways in susceptibility to colorectal carcinoma and clinical outcomes treated with FOLFOX regimen. Int J Clin Exp Pathol. 2015 Oct 1;8(10):13314-22. eCollection 2015.PMID: 26722535
48.Thomas SA, Tomeh N, Theard S. Fluorouracil-induced Hyperammonemia in a Patient with Colorectal Cancer. Anticancer Res. 2015 Dec;35(12):6761-3. PMID:26637893.
49.Kunkel TA, Erie DA. Eukaryotic Mismatch Repair in Relation to DNA Replication. Annu Rev Genet. 2015; 49:291-313.
50.Mohamed RH, El-Shal AS, El-Shahawy EE, Abdel Galil SM. Association of XRCC1 and OGG1 DNA repair gene polymorphisms with rheumatoid arthritis in Egyptian patients. Gene. 2015 Dec 9. pii: S0378-1119(15)01493-6. doi:10.1016/j.gene.2015.12.021.PMID: 26692147
51.Kwok JM, Peck B, Monteiro LJ, Schwenen HD, Millour J, Coombes RC, Myatt SS, Lam EW. FOXM1 confers acquired cisplatin resistance in breast cancer cells. Mol Cancer Res. 2010; 8(1):24-34.
52.Tanaka Y, Kobayashi H, Suzuki M, Kanayama N, Terao T. Transforming growth factor-beta1-dependent urokinase up-regulation and promotion of invasion are involved in Src-MAPK-dependent signaling in human ovarian cancer cells. J Biol Chem. 2004 Mar 5;279(10):8567-76. PMID: 14676209
53.Deacon K, Mistry P, Chernoff J, Blank JL, Patel R. p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol Biol Cell. 2003 May;14(5):2071-87. Epub 2003 Jan 26. PMID: 12802076
54.Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 2015 Jan;1855(1):104-21. doi: 10.1016/j.bbcan.2014.09.008. PMID: 25450577.
55.Ebi H, Corcoran RB, Singh A, Chen Z, Song Y, Lifshits E, Ryan DP, Meyerhardt JA, Benes C, Settleman J, Wong KK, Cantley LC, Engelman JA. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J Clin Invest. 2011 Nov;121(11):4311-21. doi:10.1172/JCI57909.PMID: 21985784
56.Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol. 2012;52:381-400. doi:10.1146/annurev-pharmtox-010611-134537.
PMID:22017684
57.Lee CW, Wong LL, Tse EY, Liu HF, Leong VY, Lee JM, Hardie DG, Ng IO, Ching YP. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 2012 Sep 1;72(17):4394-404. doi: 10.1158/0008-5472.CAN-12-0429. PMID: 22728651
58.Lee, Y.K., et al., Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells. Annals of the New York Academy of Sciences, 2009. 1171: p. 489-94.
59.Kim, H.G., et al., Metformin inhibits P-glycoprotein expression via the NF-kappaB pathway and CRE transcriptional activity through AMPK activation. British journal of pharmacology, 2011. 162(5): p. 1096-108.
60.James D. Watson (2003) DNA:The Secret of Life
61.Shen M, Hung RJ, Brennan P, Malaveille C, Donato F, Placidi D, Carta A, Hautefeuille A, Boffetta P, Porru S. Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. Cancer Epidemiol Biomarkers Prev. 2003 Nov;12(11 Pt 1):1234-40. PMID: 14652287
62.Huang WS, Yang JT, Lu CC, Chang SF, Chen CN, Su YP, Lee KC. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells. Int J Mol Sci. 2015 Dec 9;16(12):29370-82. doi:10.3390/ijms161226174. PMID: 26690142
63.Iaccarino I, Marra G, Palombo F, Jiricny J. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha. EMBO J. 1998 May 1;17(9):2677-86.PMID: 9564049
64.Wei Q, Cheng L, Hong WK, Spitz MR. Reduced DNA repair capacity in lung cancer patients. Cancer Res. 1996 Sep 15;56(18):4103-7.PMID: 8797573
65.Miao XY, Gu ZY, Liu P, Hu Y, Li L, Gong YP, Shu H, Liu Y, Li CL. The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides. 2013 Jan;39:71-9. doi: 10.1016/j.peptides.2012.10.006. PMID: 23116613.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔