(3.235.108.188) 您好!臺灣時間:2021/03/03 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王麒智
研究生(外文):Chi-Chin Wang
論文名稱:富含抗氧化物的黑豆萃取物對四氯化碳誘導大鼠肝損傷之護肝功效
論文名稱(外文):Hepatoprotective activity of antioxidant enriched black soybean extracts against carbon tetrachloride induced liver injury in rats
指導教授:許成光
指導教授(外文):Cheng-Kuang Hsu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:黑豆烘烤抗氧化肝損傷四氯化碳
外文關鍵詞:Black beansbakedantioxidantliver damagecarbon tetrachloride
相關次數:
  • 被引用被引用:1
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黑豆 (Glycine max L.)具有許多抗氧化活性成分,根據文獻指出黑豆在經過適當的預熱處理可以顯著提升抗氧化物質如多酚與花青素的萃取率與抗氧化能力。本實驗室先前研究發現黑豆水萃取物具有減緩四氯化碳所誘導的肝臟損傷。黑豆的護肝效能推測可能與抗氧化物質有關,因此本研究探討烘烤預熱處理對於黑豆水萃取物的護肝效能之影響。本研究選用台南三號的青仁黑豆,分為未烘烤黑豆、烘烤黑豆(130℃,5 分鐘)、未烘烤黑豆種皮,以熱水浸泡萃取 (80℃,30分鐘),經減壓濃縮後凍乾製成粉末。
護肝效能評估的動物實驗選用6週齡sprague-dawely (SD)大鼠,以隨機方式分為六組,組別分別為未誘導的控制組、四氯化碳誘導組 (carbon tetrachloride, CCl4)、Silymarin (CCl4+Silymarin 200 mg/kg bw)、未烘烤黑豆組 (CCl4+ 200 mg/kg bw)、烘烤黑豆組 (CCl4+ 200 mg/kg bw)、未烘烤黑豆種皮組 (CCl4+ 200 mg/kg bw),實驗進行八週餵食試驗。血清分析結果顯示,在第一、三、六及八週,四氯化碳誘導肝指數alanine aminotransferase (ALT)及aspartate aminotransferase (AST)值明顯提高,在給予Silymarin、烘烤黑豆及未烘烤黑豆種皮水萃取物能顯著降低血清中ALT與AST。在八週犧牲大鼠後,取其血清分析發現四氯化碳提高serum triglyceride (TG)、total cholesterol (TC)、blood urea nitrogen (BUN)等生化數值,但降低 total antioxidant capacity (TAC)。四氯化碳也導致肝臟中抗氧化酵素活性的下降,superoxide dismutase (SOD)、glutathione peroxidase (GPx)、catalase (CAT)、glutathione reductase (GR)、glutathione S-transferases (GST)的活性皆有明顯下降SD大鼠的肝臟組織中glutathione (GSH)與total SH groups (TSH)含量的降低及oxidized glutathione (GSSG)、malondialdehyde (MDA)的顯著增加。顯示四氯化碳誘發肝臟的氧化壓力在給予Silymarin、烘烤黑豆組及未烘烤黑豆種皮組處理能顯著降低血清中TC及BUN並提升肝臟抗氧化酵素SOD、CAT、GR、GST活性與GSH含量,及降低GSSG與MDA含量。整體來說以未烘烤黑豆種皮的護肝效果較優異,能額外提高TAC、GPx、TSH (P<0.05),降低TG、GSSG。肝臟組織切片染色顯示四氯化碳誘導組有顯著細胞空泡化 (vacuoles)、細胞壞死 (necrosis)及纖維化 (fibrosis)的情形,然而未烘烤黑豆種皮組能顯著降低細胞壞死的情況。分析三種黑豆萃取物中總多酚、總類黃酮及總花青素的含量亦顯示,黑豆種皮水萃取物含有最多的總多酚 (0.11±0.01 g/g extract)、總類黃酮 (0.39±0.04 g/g extract)、總花青素 (2.82±0.01 mg/g extract)。推測黑豆種皮組有較佳的護肝效果可能與種皮上的花青素有關。
花青素的萃取通常以含微酸的乙醇進行萃取,因此本研究再探討黑豆種皮乙醇萃取物的護肝效果,黑豆種皮以80%乙醇(含0.1%乙酸)進行4℃ 48小時萃取,經過減壓濃縮後凍乾成粉末。動物實驗同樣選用6週齡SD大鼠進行為期八週的實驗,實驗組分為五組,分別是控制組、四氯化碳誘導組、Silymarin組、低劑量組 (CCl4+ 200 mg/kg bw)、高劑量組 (CCl4+ 400 mg/kg bw)。血清分析結果顯示,Silymarin組與黑豆種皮乙醇萃取物組於第一、三、六、八週血清中ALT、AST能顯著降低,同時能降低TC、TG、BUN數值並提升TAC,並且呈現劑量的效應。Silymarin組與樣品組皆能提升肝臟中抗氧化酵素SOD、CAT、GST、GR、GPx活性,又以高劑量組表現最佳。乙醇萃取物顯著提升肝臟中的GSH、TSH,並降低GSSG、MDA含量。高劑量黑豆乙醇萃取物能顯著降低vacuoles、necrosis、fibrosis數值表示對於四氯化碳肝損具有保護的作用。
由上述實驗結果得知,黑豆種皮的乙醇萃取物亦具有護肝的效能。並且肝臟病理切片結果顯示黑豆種皮乙醇萃取物之護肝效果較水萃取物為佳,因此本研究在尋找以乙醇與丙酮有機溶劑萃取黑豆抗氧化物質的最適條件。依照部分複因子設計,每個因子有兩個不同的萃取條件,分別為烘烤溫度 (130℃、180℃)、烘烤時間 (5 min、30 min)、萃取溶劑 (乙醇、丙酮)、萃取濃度 (60%、80%)、固液態比 (1:4、1:10)、萃取溫度 (4℃、40℃)、萃取時間 (30 min、48 hr)、pH值 (4、6)以上條件分為16組別。分析總多酚、總類黃酮、總花青素,DPPH自由基清除能力與ABTS・+自由基清除能力,並且利用HPLC分析花青素C3G的含量。實驗結果顯示黑豆最佳的萃取條件為,預熱130℃烘烤5分鐘,以60%丙酮 (pH=4) 1:4在4℃萃取48小時,該條件能獲得較多總多酚與總類黃酮並且有較高的抗氧化能力。
黑豆種皮的水萃取物與乙醇萃取物都有對抗四氯化碳誘導的氧化壓力之效果,可能是因為種皮含有大量的抗氧化物質,特別是花青素。因此黑豆具有開發維護肝產品及作為天然抗氧化產品的潛力。

Black soybean (Glycine max L.) contains high amount of antioxidants, and it has been reported that preheating treatment can significantly increase the antioxidants, such as polyphenolic compounds and anthocyanin, and antioxidative activity. Our previous study indicated that black soybean had liver protective function which might be due to the antioxidant in black soybean. Therefore, in this study we investigated the effect of pre-roasting on the liver protective function of the water extract from black soybean. We selected Tainan No. 3 black soybean, the samples were roasted black soybean, unroasted black soybean, and unroasted seed coat of black soybean. After immerged in 80oC hot water for 30 min, the samples were vaccum concentrated, freeze-dried and stored until use.
Six weeks-ago Sprague-Dawely (SD) rats were used and randomized into six groups: they were the control group, carbon tetrachloride group, and carbon tetrachloride with silymarin group (200 mg/kg bw), as well as the water extracts from unroasted black soybean, roasted black soybean and the seed coat of black soybean groups (200 mg/kg bw). At 1, 3, 6 and 8 weeks, the serum samples were took from the rats and analyzed. It was found that carbon tetrachloride increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, however, the supplement of silymarin and all the water extracts significantly reduced both ALT and AST levels. The rats were scarified at 8 week, the serum and liver tissue samples were collected and analyzed. The results showed that carbon tetrachloride increased the levels of triglyceride (TG), total cholesterol (TC) and blood urea nitrogen (BUN) in the serum but decreased total antioxidant capacity (TAC). Carbon tetrachloride also resulted in the declines of antioxidant enzymes activities in the liver tissues, including the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, glutathione reductase (GR), glutathione S-transferase (GST). Glutathione (GSH) and total SH groups (TSH) contents in the liver tissue were decreased by carbon tetrachloride, but the oxidized glutathione (GSSG) and malondialdehyde (MDA) levels were increased. However, the antioxidant enzyme activities of SOD, GR, GST and caltase were significantly increase with the supplement of silymarin, the water extracts from roasted black soybean and the seed coat. Water extract from the seed coat had the highest liver protective function against carbon tetrachloride induced liver damage in SD rats. The seed coat extract also significantly reduce cell necrosis in the liver tissues induced by carbon tetrachloride. It was suggested that high amount of anthocyanin in the water extract from the seed coat might be the important factor contributed to the liver protective function, even though the water extract also had high total phenolic and total flavanoid contents.
The common practice to extract anthocyanin from natural plants is using ethanol in slightly acid condition. Therefore, we also extract the anthocyanin from the seed coat of black soybean using 80% ethanol (containing 0.1% acetate) at 4oC for 48 hr. SD rats were randomly assigned to five groups: the control group, carbon tetrachloride group, carbon tetrachloride with low (200 mg/kg bw) and high (400 mg/kg bw) amount of the ethanol extract. It was noted that the ethanol extract could significantly reduce ALT and AST levels in the serum, enhance all the antioxidant enzymes activities and GSH and TSH levels in the liver. At 400 mg/kg, the ethanol extract could also reduce the cell vacuoles, necrosis and fibrosis of the liver tissues.
Our data indicated that ethanol extract from the seed coat of black soybean also showed liver protective function against carbon tetrachloride induced liver damage, and such protective function was better than the water extracts. Thus, we proposed to search the optimal conditions for extracting antioxidants from black soybean using organic solutions, like ethanol and acetone. Based on a fractional factorial design with 8 factors having two experimental conditions, we selected a total of 16 extraction runs. The experimental combinations were: roasting temperature (130, 180oC), roasting time (5, 30 min), organic solution (ethanol, acetone), solvent concentration (60, 80%), solid and liquid ratio (1:4, 1:10 v/v), extraction temperature (4, 40oC), extraction time (0.5, 48 hr) and pH (4, 6). The best extraction condition was pre-roasting black soybean at 130oC for 5 min and using 60% acetone at 1:4 v/v, 4oC for 48 hr, pH 4. Such extraction condition obtained high antioxidant from black soybean and showed high antioxidative activities.
Both the water and ethanol extracts from the seed coat of black soybean showed liver protective function against carbon tetrachloride induced liver damage in SD rats. Anthocyanins in the seed coat were suggested to be the maim active compounds contributed to such protective function. Thus, black soybean can be considered as a natural source for both antioxidant and liver protective agents.

摘要………………………………………………………………….……………………I

Abstract…………………………………………………………………….……………IV

目次…………………………………………………………………..…………………IX

表次…………………………………………………………………………..…………XI

圖次……………………………………………………………………….……………XII

壹、 前言……………………………………………………………………..………1

貳、 文獻回顧………………………………………………………………..………3
一、 黑豆………………………………………………………………………..……3
二、 多酚化合物………………………………………………………………..……4
三、 類黃酮……………………………………………………………………..……8
四、 花青素…………………………………………………………………………10
五、 熱加工對抗氧化之影響………………………………………………………12
六、 自由基與氧化壓力……………………………………………………………12
七、 肝臟與肝損機制………………………………………………………………16
八、 肝臟保護機制…………………………………………………………………20

參、 實驗藥品與儀器…………………………………………………………………24

實驗架構Ⅰ、烘烤黑豆熱水萃取物對四氯化碳誘導肝損傷之保護效益……..……27
實驗Ⅰ方法…………………………………………………………………………..…28

實驗架構Ⅱ、黑豆種皮乙醇萃取物對四氯化碳誘導肝損傷之保護效益………..…36
實驗Ⅱ方法………………………………………………………………………..……37

實驗架構Ⅲ、烘烤黑豆萃取最適條件之探討……………………………………..…39
實驗Ⅲ方法………………………………………………………………………..……40

實驗Ⅰ結果討論…………………………………………………………………..……46
實驗Ⅱ結果討論…………………………………………………………………..……53
實驗Ⅲ結果討論…………………………………………………………………..……60

肆、 結論………………………………………………………………………………66

伍、 參考文獻…………………………………………………………………..…114
王萌、阮美娟。2007。黑豆提取物抗氧化性的研究。天津科技大學食品工程與生物技術學院。
王聖文。2014。不同加工處理對黑豆抗氧化特性與其製成飲品品質之影響。國立嘉義大學食品科學研究所碩士論文。
田羽秀。2012。香茹草對乙醯胺基苯酚誘發小鼠肝損傷之抗氧化及護肝作用。輔仁大學營養科學系碩士論文。
吳明鴻。2007。有機栽培技術對甘藷塊根之總酚、類黃酮及抗氧化活性之影響。國立嘉義大學農學研究所碩士論文。
妍甘迪。2013。黑豆茶對於乙醇誘導SD大鼠急性肝損傷之護肝功效研究。國立嘉義大學食品科學系研究所碩士論文。
李佳珍。2010。韃靼蕎麥抗氧化及護肝功效評估。國立嘉義大學食品科學系研究所碩士論文。
李炫璋。2002。牛樟芝菌絲體之體內保肝功能評估及其熱水萃物在體外對基質金屬蛋白水解酶活性之影響。國立中興大學食品科學系碩士論文。
李穎宏、陳志宗、陳正敏、林怡如。2014。黑豆機能性成分及加工利用。高雄區農業專訊 89期。高雄。
汪昂。清朝。吳福明、謝明輝合編。1987。新編本草備要。世一文化事業有限股份公司。台南市。
林孟儀.2011.白花舌草對乙醯胺酚誘發小鼠肝損傷之抗氧化及護肝作用。輔仁大學營養科學系碩士論文。
林偉瑄。2013。黑豆水萃取物的抗氧化及黑豆茶的護肝效能。國立嘉義大學食品科學研究所碩士論文。
施懿宸。2013。嘉寶果水萃物改善糖尿病腎病變(第二型)之研究。中山醫學大學生化暨生物科技研究所碩士論文。
孫曉萍、張捷莉、張福為、李學成。2006。黑豆脂肪酸成分的GC/MS分析。鞍山師範學院化學系。
國家中醫藥管理局編委會。1999。中華本草。上海科學技術出版社。大陸。
國家環境毒物研究中心。http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=15
張志翔。2015。黑豆種皮萃取物、種仁萃取物與矢車菊素-3-葡萄糖苷對四氯化碳誘導ICR小鼠急性肝損傷之護肝功能性評估。國立嘉義大學食品科學研究所碩士論文。
淡玲妹。2006。食品營養與現代“文明病”。揚州大學烹飪學報,23:26-28。
盛大夫。2013。黑豆神奇效果。新潮社小倉書房。新北市。
莊瑞焜。2008。單次衰竭運動引發老鼠不同恢復期之氧化損傷反應。國立新竹教育大學體育系體育教學碩士論文。
連大進、游添榮、吳昭慧、吳振碩、王裕權。1998。黑豆新品種台南3 號之育成。台南區農業改良場研究彙報35:14-24。
連大進。1995。台灣黑豆的利用與生產展望。農業世界147:39-42。
陳惠音、嚴國欽。1998。自由基、抗氧化防禦與人體健康。臺灣營養學會雜誌, 23:105-121。
陳智賢。2005。海巴戟天葉乙醇萃取物對環磷醯胺誘發大白鼠氧化壓力的影響。嘉南藥理科技大學生物科技研究所碩士論文。
曾仁傑。2002。葡萄皮中花青素最佳萃取條件之評估及其經驗模式之建立。國立屏東科技大學食品科學系碩士論文。
程台生、陳惠美、陳麗珠、連大進。2007。國產與市售大豆異黃酮之定量分析研究。理工研究學報41:95-113。
程台生、陳麗珠、連大進。2006。國產大豆抗氧化活性之研究。作物、環境與生物資訊3:325-336。
歐陽禹。1986。芽菜與豆。青春出版社。台北。
衛生署福利部統計處。http://www.mohw.gov.tw/cht/DOS/
衛生福利部食品藥物管理署。2012。 http://www.fda.gov.tw/TC/index.aspx
戴宗和。2009。奈米黃金、奈米黃金與樟芝固態萃取液對大鼠化學性肝損傷功效之研究。南台科技大學生物科技研究所碩士論文。
謝孟娟。2014。飼料中添加紫山藥對於雜交吳郭魚的成長表現及抗氧化酵素活性之影響。國立嘉義大學食品科學系研究所碩士論文。

Aebi, H. 1984. Catalase in vitro. Methods enzymol, 105: 121–126.
Akahori, A., Masui, M., Kagawa, K., Enomoto, M. and Satio, M. 1983. Time course of biochemical and histological alterations fllowing a single feeding of carbon tetrachloride to mice. The japanese journal of experimental medicine. 53:199–209.
Al-Rasheed, N. M., Al-Rasheed, N. M., Faddah, L.M., Mohamed, A. M., Mohammad, R. A., and Al-Amin, M. 2014. Potential impact of silymarin in combination with chlorogenic acid and/or melatonin in combating cardiomyopathy induced by carbon tetrachloride. Saudi journal of biological sciences, 21:265–274.
Anand, B. S., and Velez, M. 2000. Influence of chronic alcohol abuse on hepatitis C virus replication. Digestive diseases, 18:168–171.
Andzi Barhe, T., and Feuya Tchouya, G.R. 2015. Comparative study of the anti-oxidant activity of the total polyphenols extracted from Hibiscus Sabdariffa L., Glycine max L. Merr., yellow tea and red wine through reaction with DPPH free radicals. Arabian journal of chemistry, available online 18.
Aoyama, T., Fukui, K., Nakamori, T., Hashimoto, Y., Yamamoto, T., and Takamatsu, K. 2000. Effect of soy and milk whey protein isolates and their hydrolysateson weight reduction in genetically obese mice. Biosci biotechnol biochem, 64:2594–2600.
Ascencio, C., Torres, N., Isoard-Acosta, F., Gomez-Perez, F.J., Hernandez-Pando, R., and Tovar, A.R. 2004. Soy protein affects serum insulin and hepatic SREBP-1 mRNA andreduces fatty liver in rats. The journal of nutrition, 134:522–529.
Astadi, I. R., Astuti, M., Santoso, U., and Nugraheni, P. S. 2009. In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food chemistry, 112:659–663.
Ball, K. R., and Kowdley, K. V. 2005. A review of Silybum marianum (milk thistle) as a treatment for alcoholic liver disease. Journal of clinical gastroenterology, 39:520–528.
Bansal, A. K., and Kaur, A. R. J. 2009. Cooperative functions of manganese and thiol redox system against oxidative stress in human spermatozoa. Journal of human reproductive sciences, 2(2):76–80.
Bansal, T., Jaggi, M., Khar, R. K., and Talegaonkar, S. 2009. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. Journal of pharmacy pharmaceutical sciences, 12 (1):46–78.
Bradford, M. M. A. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical biochemistry, 72:248–254.
Bravo, L. 1998. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutrition reviews, 56(11):317–333.
Brown, P. D., Bloxidge, R. E., Stuart, N. S., Gatter, K. C., and Carmichael, J. 1993. Association between expression of activated 72-kilodalton gelatinase and tumor spread in non-small-cell lung carcinoma. Journal of the national cancer institute, 85:574–578.
Calabrese, E. J., and Canada, A. T. 1989. Pharmacology & Therapeutics, 44:297–307.
Camps, J., Bargallo, T., Gimenez, A., Alie, S., Caballeria, J., Pares, A., Joven, J., Masana, L. and Rodes, J. 1992. Relationship between hepatic lipid peroxidation and fibrogenesis in carbon tetrachloride-treates rat: effect of zinc administration. Clinical science. 83(6):695–700.
Castillo, T., Koop, D. R., Kamimura, S., Triadafilopoulos, G., and Tsukamoto, H. 1992. Role of cytochrome P-450 2E1 in ethanol-carbon tetrachloride and iron-dependent microsomal lipid peroxidation. Hepatology, 16:992–996.
Castro, J. A., and Castro, G. D. 1997. Carbon tetrachloride-induced hepatotoxicity. Comprehensive toxicology, 9:251–272.
Chan, E. W. C., Lim, Y. Y., Wong, S. k., Lim, K. K., Tan, S. P., Lianto, F. S., and Yong, M. Y. 2009. Effect of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food chemistry, 113:166–172.
Chance, B., Sies, H., and Boveris, A. 1979. Physiological reviews, 59:527–605.
Choi, J. H., Hwang, Y. P., Choi, C. Y., Chung, Y. C., and Jeong, H. G. 2010. Anti-fibrotic effects of the anthocyanins isolated from the purple-fleshed sweet potato on hepatic fibrosis induced by dimethylnitrosamine administration in rats. Food and chemical toxicology, 48:3137–3143.
Choung, M.-G., Baek, I.-Y., Kang, S.-T., Han, W.-Y., Shin, D.-C., Moon, H.-P., et al. (2001). Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). Journal of agricultural and food chemistry, 49:5848–5851.
Cook, N. C., and S. Samman. 1996. Flavonoids: Chemistry, metabolism, cardiopprotective effect and dietary sources. Journal of nutritional biochemistry, 7:66–76.
Cullen, J. M. 2010.Histologic patterns of hepatotoxic injury. Comprehensive toxicology, Volume 9: 141–173.
DerMarderosian, A. (2001). The review of natural products (1st ed.). St Louis, MO: Facts and Comparisons.Desplaces, J., Choppin, G., Vogel, G., & Trost, W. 1975. The effects of silymarin on experimental phalloidine poisoning. Arzneimittelforschung, 25:89–96.
Desplaces, J., Choppin, G., Vogel, G., & Trost, W. 1975. The effects of silymarin on experimental phalloidine poisoning. Arzneimittelforschung, 25:89–96.
Dewanto, V., Wu, X., Adom, K. K., and Liu, R. H. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of agricultural and food chemistry, 50:3010–3014.
Dhiman, A. Nanda, A. and Ahmad, S. 2012. A quest for staunch effects of flavonoids: Utopian protection against hepatic ailments. Arabian journal of chemistry, available online 23.
Domitrovic, R., Rashed, K., Cvijanovic, O., Vladimir-Knezevic, C., Škoda, M., and Višnic, A. 2015. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chemico-biological interactions, 230:21–29.
Donkor, O., Henriksson, A., Singh, T., Vasiljevic, T., and Shah N. 2007.ACE-inhibitory activityof probiotic yoghurt. International dairy journal, 17:1321–1331.
Eminzade, S., Uras, F., Izzettin, F.V., 2008. Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals. Nutrition & Metabolism, 5(1):18.
Flohe, L. In: Free Radicals in Biology; Pryor, W. A. Ed.; Academic Press: New York, 1982; Vol. V, 223–254.
Forstrom, J. W., Zakowski, J. J., and Tappel, A. L. 1978. Biochemistry, 17:2639–2644.
Fraga, C.G. 2007. Plant Polyphenols: How to translate their in vitro antioxidant actions to in vivo conditions. Iubmb life, 59: 308–315.
Frankel, E. N. 1991. Recent advances in lipid oxidation. Journal of the science of food and agriculture, 54:495–511.
Fridovich, I. 1995. Annual review of biochemistry, 64:97–112.
Ghiselli, A., Nardini, M., Baldi, A., Scaccini, C. 1998. Antioxidant activity of different phenolic fractions separated from an italian red wine. Journal of agricultural and food chemistry, 46 (2):361–367.
Gill, S. S., Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiol biochem, 48:909–930.
Gordon, M. H. 1990. The mechanism of antioxidant action in vitro. In Food antioxidants, ed. By Hudson, B.J.F. Chapter 1. P1–18. Elsevier Applied Science: London and New York.
Habig, W, H ., and Jakoby, W, B. 1981. Assays for differentiation of glutathione S-transferases. Methods enzymol, 77:398–405.
Halliwell, B., and Gutteridge, J. M. C. 1990. Role of free radicals and catalytic metalion in human disease. Methods enzymol, 186:1–85.
Hao, J., Zhu, H., Zhang, Z., Yang, S., and Li, H. 2015. Identification of anthocyanins in black rice (Oryza sativa L.) by UPLC/QTOF-MS and their in vitro and in vivo antioxidant activities. Journal of cereal science, 64:92–99.
Harborne, B.J., and Williams, C. A. 2000. Advances in flavonoid research since 1992. Phytochemistry, 55:481–504.
Hayes, J. D., Flanagan, J. U., Jowsey, I. R. 2005. Glutathione transferases. Annu rev pharmacol toxicol, 45:51–88.
Head, K.A. 1998. Isoflavones and other soy constituents in human health and disease. Alternative medicine, 3: 433–450.
Hissin, P, J., and Hilf, R. 1976. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Analytical biochemistry, 74(1): 214–226.
Hitchler, M. J., Domann, F. E. 2007. An epigenetic perspective on the free radical theory of development. Free radical biology and medicine, 43:1023–1036.
Hori, G., Wang, M.F., Chan, Y.C., Komatsu, T., Wong, Y., and Chen, T.H. 2001.Soy proteinhydrolyzate with bound phospholipids reduces serum cholesterol levelsin hypercholesterolemic adult male volunteers. Biosci biotechnol biochem, 65:72–78.
Hou, F., Zhang, R., Zhang, M., Su, D., Wei, Z., Deng, Y., Zhang, Y., Chi, J., and Tang, X. 2013. Hepatoprotective and antioxidant activity of anthocyanins in black rice bran on carbon tetrachloride-induced liver injury in mice. Journal of functional foods 5:1705–1713.
Hou, Z., Qin, P., Zhang, Y., Cui, S., and Ren, G. 2013. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food research international, 50:691–697.
Hsu, Y.W., Tsai, C. F., Chuang, W. C., Chen,W. K., Ho, Y. C., and Lu, F. J. 2010. Protective effects of silica hydride against carbon tetrachloride-induced hepatotoxicity in mice. Food and chemical toxicology, 48:1644–1653.
Hwang, Y. P., Choi, J. H., Yun, H. J., Han, E. H., Kim, H. G., Kim, J. Y.,Park, B. H., Khanal, T., Choi, J. M., Chung, Y. C., and Jeong, H. G. 2011. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food and chemical toxicology 49:93–99.
Jaeschke, H. 2010. Antioxidant Defense Mechanisms. Comprehensive Toxicology, 9:319–337.
Juan, M. Y., and Chou, C. C. 2010. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with bacillus subtilis BCRC14715. Food microbiology, 27:586–591.
Kasahara, K., Nishikawa, A., Furukawa, F., Ikezaki, S., Tanakamaru, Z., Lee, I. S., Imazawa, T., Hirose, M. 2002. A chronic toxicity study of josamycin in F344 rats. Food and chemical toxicology 40:1017–1022.
Kim, H. G., Kim, G. W., Oh, H., Yoo, S. Y., Kim, Y. O., Oh, M. S. 2011. Influence of roasting on the antioxidant activity of small black soybean (Glycine max L. Merrill). LWT - Food science and technology, 44:992–998.
Kim, H. K., Kim J. N., Han, S. N., Nam, J. H., Na, H. N., and Ha, T. J. 2012. Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutrition research, 32:770–777.
Kim, S. Y., Wi, H. R., Choi, S., Ha, T. J., Lee, B. W., and Lee, M. 2015. Inhibitory effect of anthocyanin-rich black soybean testa (Glycine max (L.) Merr.) on the inflammation-induced adipogenesis in a DIO mouse model. Journal of functional foods, 14:623–633.
Klucis, E., and Masters, C. J. 1984. Biochemistry international, 8:513–519.
Knodell, R. G., Ishak, K. G., Black, W. C., Chen, T. S., Craig, R., Kaplowitz, N., Kiernan, T. W., and Wollman, J. 1981. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology, Vol.1, pp.431– 43.
Kohen, R. and Nyska, A. 2002. Oxidation of biological systems: Oxidative stress phenomena, antioxidant, redox reaction, and methods for their quantification. Toxicologic pathology, 30:620-650.
Kong, J. M., Chia, L.S., Goh, N.K., Chia, T.F., and Brouillard, R. 2003. Analysis and biological activities of anthocyanins. Phytochemistry, 64:923–933.
Kreeman, V., Skottova, N., & Walterova, D. 1998. Silymarin inhibits the development of diet-induced hypercholesterolemia in rats. Planta medica, 64:138–142.
Kruidenier, L., and Verspaget, H. W. 2002. Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease-radicals or ridiculous? Alimentary pharmacology & Therapeutics, 16:1997–2015.
Kshirsagar, A., Ingawale, D., Ashok, P., & Vyawahare, N. 2009. Silymarin: a comprehensive review. Pharmacognosy reviews, 3:116–124.
Kumar, S. V., Sanjeev, T., Ajay, S., Kumar, S. P., and Anil, S. 2012. A Review on Hepatoprotective Activity of Medicinal Plants. The international journal of advanced research in pharmaceutical bio sciences, 2(1):31–38.
Lee, J. H., Kang, N. S., Shin, S. O., Shin, S. H., Lim, S. G., Suh, D. Y., et al. 2009. Characterisation of anthocyanins in the black soybean (Glycine max L.) by HPLCDAD–ESI/MS analysis. Food chemistry, 112:226–231.
Lee, J., Durst, R. W., and Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative Study. Journal of AOAC international, 88:1260–11278.
Li, H. B., Wong, C. C., Cheng, K. W., and Chen, F. 2008. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-food science and technology, 41:385–390.
Lieber, C. S. Alcohol and the liver: 1994 update. Gastroenterology, 106:1085–1105.
Lin, Y. C., Cheng, K. M., Huang, H. Y., Chao, P. Y., Hwang, J. M., Lee, H. H., Lu, C. Y., Chiu, Y. W., Liu, J. Y. 2013. Hepatoprotective activity of Chhit-Chan-Than extract powder against carbon tetrachloride-induced liver injury in rats. Journal of food and drug analysis, 22(2):220–229.
Lou, S. N., Lin, Y. S., Hsu, Y. S., Chiu, E. M., and Ho, C. T. 2014. Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food chemistry, 161:246–253.
Lu, Y., Cederbaum, A. I. 2008. CYP2E1 and oxidative liver injury by alcohol. Free Radical Biology & Medicine, 44:723–738.
Luper, S. 1998. A review of plants used in the treatment of liver diseases: Part 1. Alternative medicine review, 3 : 410–21.
Ma, T., Hu, N., Ding, C., Zhang, Q., Li, W., Suo, Y., Wang, H., Bai, B., and Ding, C. 2015. In vitro and in vivo biological activities of anthocyanins from Nitraria tangutorun Bobr. Fruits. Food chemistry, 194:296–303.
Ma, T., Sun, X., Tian, C., Zheng, Y., Zheng, C., and Zhan. J. 2015. Chemical composition and hepatoprotective effects of polyphenols extracted from the stems and leaves of sphallerocarpus gracilis. Journal of functional foods, 18: 673–683.
Manach, C., Scalbert, A., Morand, C., Remesy, C., and Jimenez, L. 2004. Polyphenols: food sources and bioavailability. American journal of clinical nutrition, 79:727–747.
Matsukawa, T., Inaguma, T., Han, J., Villareal, M. O., and Isoda, H. 2015. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. Journal of nutritional biochemistry, 26:860–867.
Messina, M.J. and Am, J. 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. Clinical nutrition, 70:439–450.
Messina, M.J. and Barnes, S. 1991. The role of soy products in reducing risk of cancer. Journal of the national cancer institute, 83:541–546.
Mills, J. P., Simon, P. W., Tanumihardjo, S. A. 2008. Biofortified carrot intake enhances liver antioxidant capacity and vitamin a status in mongolian gerbils. Journal of nutrition, 138:1692–1698.
Morimoto, M., Zern, M. A., Hagbjork, A. L., Ingelman-Sundberg, M., and French, S. W. 1994. Fish oil, alcohol, and liver pathology: role of cytochrome P450 2E1. Proc. Soc. Exp. Biol. Med, 207:197–205.
Obi, F., usenu, I., and osayande, J., 1998. Prevention of carbon tetrachloride-induced hepatotoxicity in the rat by H. Rosasinensis anthocyanin extract administered in ethanol. Toxicology 131 (2-3):93–98.
Oipa, T., Srijaranai, S., Tuntulani, T., and Ngeontae, W., 2011. New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems. Food research international, 44:798–806.
Paglia, D., and Valentine, W. 1967. Studies on the quantitative and qualitative characte- -rization of erythrocyte glutathione peroxidase. Journal of laboratory and clinical medicine, 70: 158–169.
Paik, S. S., Jeong, E., Jung, S.W., Ha, T.J., Kang, S., Sim, S., Jeon, J. H., Chun, M. H, and Kim, I. B. 2012.Anthocyanins from the seed coat of black soybean reduce retinal degeneration induced by N-methyl-N-nitrosourea. Experimental eye research, 97:55–62.
Pandey, S., Lopez, C., and Jammu, A. 2003. Oxidative stress and activation of proteasome protease during serum deprivation of cell death by melatonin. Apoptpsis, 8:497–508.
Park, S. W., Kang, J. W. and Lee, S. M. 2015. Role of kupffer cells in ischemic injury in alcoholic fatty liver. Journal of surgical research, 194:91–100.
Pérez, T. R. 1985. Is cirrhosis of the liver experimentally produced by CC14 an adequate model of human cirrhosis. Hepatology, 3:112–120.
Petti, S., and Scully, C. 2009. Polyphenols, oral health and disease: A review. Journal of dentistry, 37:413–423.
Pisoschi, A. M., and Pop, A. 2015. The role of antioxidants in the chemistry of oxidative stress: A review, european journal of medicinal chemistry, 97: 55–74.
Poli, G., Albano, E., Dianzani, M.U. 1987. The role of lipid peroxidation in liver damage. Chemistry and physics of lipids, 45:117–42.
Rajesh, M.G., and Latha, M. S. 2004. Preliminary evaluation of the antihepatotoxic activity of Kamilari, a polyherbal formulation. Journal of ethnopharmacology, 91:99–104.
Recknagel, R.O. 1983. A new direction in the study of carbon tetrachloride hepatotoxicity. Life sciences, 33(5):401–408.
Record, I.R., Dreosti, I.E., and McInerney, J.K. 1995. The antioxidant activity of genistein in vitro. The journal of nutritional biochemistry, 6:481–485.
Rodrigo, R., and Bosco, C.2006. Oxidative stress and protective effects of polyphenols: Comparative studies in human and rodent kidney. A review. Comparative biochemistry and physiology, 142:317–327.
Ruwart, M.J., Wilkinson, K.E., Rush, B.D., Vidmar, T.J., Peters, K.M., Henley, K.S. 1989. The integrated value of serum procollagen III peptide over time predicts hepatic hydroxyproline content and stainable collagen in a model of dietary cirrhosis in the rat. Hepatology, 10:801– 806.
Sanchez, R. I., Kauffman, F. C. 2010. Regulation of Xenobiotic Metabolism in the Liver. Comprehensive toxicology (Second Edition), 9:109-128.
Sastre, J., Pallardo, F. V., Pla, R. 1996. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology, 24:1199–1205.
Saul, R. L. and Ames, B. N. 1986. Background levels of DNA damae in the poplation. Basic life science, 38:529–535.
Shaker, M. E., Shiha, and G. E., Ibrahim, T. M. 2011. Comparison of early treatment with low doses of nilotinib, imatinib and a clinically relevant dose of silymarin in thioacetamide-induced liver fibrosis. European journal of pharmacology, 670:593–600.
Shaker, M. E., Zalata, K. R., Mehal, W. Z., Shiha, G. E., and Ibrahim, T. M. 2011. Comparison of imatinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis. Toxicology and applied pharmacology, 252:165–175.
Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40:945–948.
Sies, H. 1991. Oxidative Stress: from basic research to clinical application. American journal of medicine, 91: 31–38.
Simplicio, P. D., Rossi, R., Falcinelli, S., Ceserani, R., Formento, M. L. 1997. Antioxidant status in various tissues of the mouse after fasting and swimming stress. European journal of applied physiology, 76: 302–307.
Slavin, M., Lu, Y., Kaplan, N., and Yu, L. 2013. Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers. Food chemistry, 141:1166–1174.
Slot, J. W., Geuze, H. J., Freeman, B. A., and Crapo, J. D. 1986. Laboratory investigation, 55:363–371.
Sohn, D. W., Bae, E. j., Kim, H. S., Kim, H. S., and Kim, S. W. 2014. The anti-inflammatory and antifibrosis effects of anthocyanin extracted from black soybean on a peyronie disease rat model. Urology, 84: 1112–1116.
Stadtman, E. R., and Oliver, C. N. 1991. Metal-catalyzed oxidation of proteins. Physiological consequences. Journal of biological chemistry, 266:2005–2008.
Steven, K., Nordeen, B. J., Bona, D. N., Jones, J. R., Lambert, T. A. and Jackson. 2013 .Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin. Hormones and cancer, 4:293–300.
Sturgill, M. G., and Lambert, G. H. 1997. Xenobiotic-induced hepatotoxicity: mechanisms of liver injury and methods of monitoring hepatic function. Clinical chemistry. 43:1512–1526.
Tlilia, N., Mejrib, H., Anouerc, F., Saadaouie, E., Khaldie, A., and Nasria, N. 2015. Phenolic profile and antioxidant activity of Capparis spinosa seedsharvested from different wild habitats. Industrial crops and products, 76:930–935.
Tong, Jing., Yao, Xincheng., Zeng, Hong., Zhou, Gao., Chen, Yuxin., Ma, Bingxin ., Wang, Youwei. 2015. Hepatoprotective activity of flavonoids from Cichorium glandulosum seeds in vitro and in vivo carbon tetrachloride-induced hepatotoxicity. Journal of ethnopharmacology, 29.
Turkmen, N., Sari, F., and Velioglu, Y. S. 2005. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food chemistry, 93:713–718.
Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., and Telser, J. 2004. Role of oxygen radicals in DNA damage and cancer incidence. Molecular and cellular biochemistry, 266:37–56.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., and Telser, J. 2007.Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & Cell biology, 39:44–84.
Videla, L. A., Fernandez, V., and Valenzuela, A. 1987. Age-dependent changes in rat liver lipid peroxidation and glutathione content induced by acute ethanol indestion. Cell biochemistry and function, 5:273–280.
Wagner, H. 1985. Annual proceedings of phytochemical society of europe, 25:409.
Wang, M. Y., and Liehr, J. G. 1995. Lipid hydroperoxide-induced endogenous DNA addusts in hamsters: possible mechanism of lipid hydroperoxid-mediated carcinogenesis. Archives of biochemistry and biophysics, 316:38–46.
Weber, L. W., Boll, M., and Stampfl, A. 2003. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Critical reviews in toxicology, 33:105–136.
Wu, P., Ma, G., Li, N., Deng, Q., Yin, Y., Huang, R. 2015. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of rhodomyrtus tomentosa (Ait.) Hassk. Food chemistry, 173:194–202.
Xu, G., ye, X., chen, J., and liu, D. 2007. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. Journal of agricultural and food chemistry, 55:330−335.
Yan, X., Wu, L., Li, B., Meng, X., Dai, H., Zheng, Y., and Fu, J. 2015. Cyanidin-3-O-glucoside attenuates acute lung injury in sepsis rats. Journal of surgical research, 12:1–9.
Young, I. S., and Woodside, J. V. 2001. Antioxidants in health and disease. Journal of clinical pathology, 54:176–186.
Zhang, J., Liu, M., Yang, Y., Lin, L., Xu, N., Zhao, H ., Jia, L. 2015. Purification, characterization and hepatoprotective activities of mycelia Zinc polysaccharides by pleurotus djamor. Carbohydrate polymers, 28.
Zhang, R. F., Zhang, F. X., Zhang, M. W., Wei, Z. C., Yang, C. Y., Zhang, Y., et al. 2011. Phenolic composition and antioxidant activity in seed coats of 60 chinese black soybean (Glycine max L. Merr.) varieties. Journal of agricultural and food chemistry, 59:5935–5944.
Zhao, M., Wang, P., Zhu, Y., Liu, X., Hu, X., and Chen, F. 2015. Blueberry anthocyanins extract inhibits acrylamide-induced diverse toxicity in mice by preventing oxidative stress and cytochrome P450 2E1 activation. Journal of functional foods 14:95–101.
Zhu, W., Jia, Q., Wang, Y., Zhang, Y., and Xia, M. 2012. The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP–PKA-dependent signaling pathway. Free radical biology & Medicine, 52:314–327.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔