跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家平
論文名稱:花生芽粉膳食補充對去卵巢大鼠之心臟保護效應與機制
論文名稱(外文):花生芽粉膳食補充對去卵巢大鼠之心臟保護效應與機制
指導教授:林淑美林淑美引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:花生芽粉白藜蘆醇植物雌激素細胞凋亡
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流行病學研究證實,女性停經後罹患心臟疾病的機率大幅上升,主要原因一般認為是體內雌性激素分泌減少所致。雌激素主要透過活化雌激素受體 ER-α及 ER-β 傳遞細胞訊息,經由調節心肌細胞之氧化壓力、粒線體功能、能量平衡及細胞凋亡機制等作用,預防及改善心臟疾病。近年發現植物雌激素有效預防更年期症狀。花生芽粉富含天然功能性成分,包括白藜蘆醇 (resveratrol) 、Arachidin-1、Arachidin-3 及 Isopentadienylresveratrol 等。其所含二苯乙烯類化合物例如白藜蘆醇具類似雌激素之特性,且被證實具有多重疾病預防功效。因此本研究之目的為探討花生芽粉預防更年期心肌細胞病變之效果。以去卵巢之雌性 Sprage Dawley (SD) 大鼠作為實驗模式,餵食不同劑量 (0、50、100、150 mg / kg body weight) 之花生芽粉,持續90天後,檢測心臟組織之抗氧化能力、雌激素受體與粒線體生合成相關基因以及細胞凋亡調節機制相關指標之表現。結果顯示,去卵巢處理不影響去卵巢鼠心臟組織抗氧化酵素包括過氧化酶 (Catalase)、超氧岐化酶 (Superoxide dismutase; SOD) 及麩胱甘肽過氧化酶 (Glutathione peroxidase; GPx) 之酵素活性,以及麩胱甘肽 (glutathione; GSH) 之含量,但膳食補充花生芽粉顯著提升過氧化酶及含錳超氧岐化酶(Manganese superoxide dismutase; SOD2) 的蛋白表現。去卵巢處理使心臟組織 ER-β 表現量下降,但不影響 ER-α 之蛋白質表現。而膳食補充中及高劑量花生芽粉降低去卵巢大鼠心臟組織之 ER-α 表現,而高劑量花生芽粉可回復因去卵巢處理所造成之 ER-β 蛋白質表現下降情形。粒線體相關指標檢測結果顯示,去卵巢處理增加心臟組織粒線體生合成因子 peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α,但不影響粒線體轉錄因子 A (mitochondrial transcription factor A ; mtTFA)、nuclear respiratory factor-1 (NRF-1),以及粒線體融合 (fusion) 因子—mfn2 之表現。膳食補充花生芽粉不影響去卵巢大鼠心臟組織之粒線體生合成與融合因子的表現,但明顯抑制心臟組織中粒線體相關之促凋亡蛋白—Bax 之表現。綜合上述結果說明,花生芽粉對雌激素受體 ER-α 及 ER-β 蛋白質表現之調節效應不同;可提升去卵巢大鼠之心臟組織 ER-β 且抑制 ER-α 蛋白質表現,進而調節雌激素細胞不同生理功能,且經由提升心臟組織之抗氧化能力,以及降低促凋亡因子之表現,對去卵巢大鼠之心臟具有保護功效,說明花生芽粉於預防更年期相關心臟疾病之潛在功能性,值得更深入之研發應用。
摘要……………………………………………………………………Ⅰ
Abstract…………………………………………………………………Ⅲ
壹、文獻回顧…………………………………………………………1
一、心臟疾病之流行病學與病理機制………………………………1
(一) 心臟疾病之流行病學………………………………………1
(二) 心臟功能與心臟疾病………………………………………2
(三) 心臟疾病之病理機制………………………………………5
二、女性雌激素之生理………………………………………………6
(一) 更年期與雌激素……………………………………………6
(二) 雌激素與雌激素受體之作用機轉…………………………7
(三) 更年期荷爾蒙補充療法與植物雌激素………………………9
三、落花生營養成分與保健功能…………………………………11
(一) 落花生簡介及營養成分……………………………………11
(二) 落花生植物防禦素與二苯乙烯類化合物…………………12
1. 雌激素調節能力……………………………………………14
2. 抗氧化能力…………………………………………………15
(1) 活性氧分子……………………………………………15
(2) 抗氧化系統……………………………………………15
3. 抗發炎能力…………………………………………………16
4. 抗衰老能力………………………………………………17
5. 抗癌能力……………………………………………………17
6. 抗心血管疾病………………………………………………18
四、心肌細胞凋亡與心臟病理機制…………………………………19
(一) 細胞凋亡形態學……………………………………………19
(二) 細胞凋亡之訊息傳遞路徑………………………………19
(三) 心肌細胞與細胞凋亡之相關性……………………………21
五、粒線體與心臟功能……………………………………………22
(一) 粒線體結構…………………………………………………22
(二) 粒線體生合成………………………………………………23
(三) 粒線體動力學動態 (Mitochondrial dynamics)……………24
貳、研究目的…………………………………………………………27
叁、實驗架構…………………………………………………………28
肆、材料與方法………………………………………………………29
一、實驗儀器………………………………………………………29
二、實驗試劑………………………………………………………30
三、實驗方法………………………………………………………33
(一) 實驗動物分組與樣品處理………………………………33
(二) 大鼠心臟組織處理………………………………………34
(三) 蛋白質濃度測定…………………………………………34
(四) 過氧化酶 (Catalase) 酵素活性之測定…………………35
(五) 超氧岐化酶 (Superoxide Dismutase; SOD) 活性分析……36
(六) 麩胱甘肽過氧化酶 (Glutathione peroxidase) 活性測定……37
(七) 麩胱甘肽 (Glutathione) 含量測定………………………38
(八) 蛋白質表現測定…………………………………………39
(九) Total RNA 萃取……………………………………………41
(十) cDNA 合成………………………………………………42
(十一) 聚合酶連鎖反應 (Polymerase chain reaction; PCR)……43
(十二) 聚合酶連鎖反應產物確認與分析………………………43
(十三) 統計分析…………………………………………………44
伍、結果………………………………………………………………45
一、花生芽粉對去卵巢大鼠心臟組織抗氧化酵素活性之影響……45
二、花生芽粉對去卵巢大鼠心臟抗氧化酵素蛋白質表現之影響…47
三、花生芽粉對去卵巢大鼠心臟雌激素受體蛋白質表現之影響…49
四、花生芽粉對去卵巢大鼠心臟粒線體生合成之影響……………50
五、花生芽粉對去卵巢大鼠心臟粒線體動態學之影響……………54
六、花生芽粉對去卵巢大鼠心臟細胞凋亡之影響…………………55
陸、討論………………………………………………………………80
一、花生芽粉對去卵巢大鼠心臟組織抗氧化酵素之影響…………80
二、花生芽粉對去卵巢大鼠心臟雌激素受體之影響………………82
三、花生芽粉對去卵巢大鼠心臟粒線體生合成之影響……………84
四、花生芽粉對去卵巢大鼠心臟粒線體動態學之影響……………86
五、花生芽粉對去卵巢大鼠心臟細胞凋亡之影響…………………87
柒、結論………………………………………………………………89
捌、參考文獻…………………………………………………………90
1. Laslett, L. J., Alagona, P., Jr., Clark, B. A., Drozda, J. P., Jr., Saldivar, F., Wilson, S. R., Poe, C., & Hart, M. (2012). The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol, 60(25 Suppl), S1-49.
2. Brown, W. V., Carson, J. A., Johnson, R. K., & Kris-Etherton, P. (2015). JCL roundtable: fast food and the American diet. J Clin Lipidol, 9(1), 3-10.
3. Munukutla, S., Pan, G., Deshpande, M., Thandavarayan, R. A., Krishnamurthy, P., & Palaniyandi, S. S. (2016). Alcohol Toxicity in Diabetes and Its Complications: A Double Trouble? Alcohol Clin Exp Res, 40(4), 686-697.
4. Vaidya, V., Gangal, N. S., Shah, S., Gangan, N., & Bechtol, R. (2016). Trends in Smoking Status and Utilization of Smoking Cessation Agents Among Females with Cardiovascular Diseases. J Womens Health, 25(3), 270-275.
5. Kessler, T., Vilne, B., & Schunkert, H. (2016). The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med, 8(7), 688-701
6. Aljefree, N., & Ahmed, F. (2015). Association between dietary pattern and risk of cardiovascular disease among adults in the Middle East and North Africa region: a systematic review. Food Nutr Res, 59, 27486.
7. Mosca, L., Barrett-Connor, E., & Wenger, N. K. (2011). Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation, 124(19), 2145-2154.
8. Stocco, C. (2012). Tissue physiology and pathology of aromatase. Steroids, 77(1-2), 27-35.
9. Luo, T., & Kim, J. K. (2015). The Role of Estrogen and Estrogen Receptors on Cardiomyocytes: An Overview. Can J Cardiol, 32(8) 1017-25.
10. Rivera, C. M., Grossardt, B. R., Rhodes, D. J., Brown, R. D., Jr., Roger, V. L., Melton, L. J., 3rd, & Rocca, W. A. (2009). Increased cardiovascular mortality after early bilateral oophorectomy. Menopause, 16(1), 15-23.
11. Tarhouni, K., Guihot, A. L., Freidja, M. L., Toutain, B., Henrion, B., Baufreton, C., Pinaud, F., Procaccio, V., Grimaud, L., Ayer, A., Loufrani, L., Lenfant, F., Arnal, J. F., & Henrion, D. (2013). Key role of estrogens and endothelial estrogen receptor alpha in blood flow-mediated remodeling of resistance arteries. Arterioscler Thromb Vasc Biol, 33(3), 605-611.
12. Carr, M. C. (2003). The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab, 88(6), 2404-2411.
13. Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E., & Klein, S. (2007). Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes, 56(4), 1010-1013.
14. Lovejoy, J. C., Champagne, C. M., de Jonge, L., Xie, H., & Smith, S. R. (2008). Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes (Lond), 32(6), 949-958.
15. Bonithon-Kopp, C., Scarabin, P. Y., Darne, B., Malmejac, A., & Guize, L. (1990). Menopause-Related Changes in Lipoproteins and Some Other Cardiovascular Risk Factors. Int. J. Epidemiol, 19(1), 42-48.
16. Rubanyi, G. M., Freay, A. D., Kauser, K., Sukovich, D., Burton, G., Lubahn, D. B., Couse, J. F., Curtis, S. W., & Korach, K. S. (1997). Vascular estrogen receptors and endothelium-derived nitric oxide production in the mouse aorta. Gender difference and effect of estrogen receptor gene disruption. J Clin Invest, 99(10), 2429-2437.
17. Enmark, E., & Gustafsson, J. A. (1999). Oestrogen receptors ± an overview. J Intern Med, 246(2), 133-138.
18. Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., Tujague, M., Strom, A., Treuter, E., Warner, M., & Gustafsson, J. A. (2007). Estrogen receptors: how do they signal and what are their targets. Physiol Rev, 87(3), 905-931.
19. Yang, S. H., Liu, R., Perez, E. J., Wen, Y., Stevens, S. M., Jr., Valencia, T., Brun-Zinkernagel, A. M., Prokai, L., Will, Y., Dykens, J., Koulen, P., & Simpkins, J. W. (2004). Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci U S A, 101(12), 4130-4135.
20. Arias-Loza, P. A., Kreissl, M. C., Kneitz, S., Kaiser, F. R., Israel, I., Hu, K., Frantz, S., Bayer, B., Fritzemeier, K. H., Korach, K. S., & Pelzer, T. (2012). The estrogen receptor-alpha is required and sufficient to maintain physiological glucose uptake in the mouse heart. Hypertension, 60(4), 1070-1077.
21. Krege, J. H., Hodgi, J. B., Couse, J. F., Enmark, E., Warne, M., Mahle, J. F., Sa, M., Korach, K. S., Gustafsson, J.-Å., & Smithies, O. (1998). Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc. Natl. Acad. Sci. USA, 95(26), 15677-15682.
22. Hsieh, Y.-C., Yu, H.-P., Suzuki, T., Choudhry, M. A., Schwacha, M. G., Bland, K. I., & Chaudry, I. H. (2006). Upregulation of mitochondrial respiratory complex IV by estrogen receptor-beta is critical for inhibiting mitochondrial apoptotic signaling and restoring cardiac functions following trauma-hemorrhage. J Mol Cell Cardiol, 41(3), 511-521.
23. Hsieh, Y. C., Choudhry, M. A., Yu, H. P., Shimizu, T., Yang, S., Suzuki, T., Chen, J., Bland, K. I., & Chaudry, I. H. (2006). Inhibition of cardiac PGC-1alpha expression abolishes ERbeta agonist-mediated cardioprotection following trauma-hemorrhage. FASEB J, 20(8), 1109-1117.
24. Hale, G. E., & Shufelt, C. L. (2015). Hormone therapy in menopause: An update on cardiovascular disease considerations. Trends Cardiovasc Med, 25(6), 540-549.
25. Farquhar, C., Marjoribanks, J., Lethaby, A., Suckling, J. A., & Lamberts, Q. (2009). Long term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev, 15(2), CD004143.
26. Kuiper, G. G. (1997). Comparison of the Ligand Binding Specificity and Transcript Tissue Distribution of Estrogen Receptors alpha and beta. Endocrinology, 138(3), 863-870.
27. 張如君. (2006). 利用花生仁發芽生合成二苯乙烯類多酚化合物與其生物活性之探討. 國立嘉義大學農學研究所碩士論文.
28. 林士清. (2012). 添加活性花生芽粉製作饅頭之二苯乙烯類化合物含量變化與抗氧化活性探討. 國立嘉義大學食品科學系碩士論文.
29. Chang, J. C., Lai, Y. H., Djoko, B., Wu, P. L., Liu, C. D., Liu, Y., & Chiou, R. Y.-Y. (2006). Biosynthesis enhancement and antioxidant and anti-inflammatory activities of peanut (Arachis hypogaea L.) arachidin-1, arachidin-3, and isopentadienylresveratrol. J Agric Food Chem., 54(26), 10281-10287.
30. Pozo-Guisado, E., Lorenzo-Benayas, M. J., & Fernandez-Salguero, P. M. (2004). Resveratrol modulates the phosphoinositide 3-kinase pathway through an estrogen receptor alpha-dependent mechanism: relevance in cell proliferation. Int J Cancer, 109(2), 167-173.
31. Gehm, B. D., McAndrews, J. M., PEI-YU Chiem, P. Y., & Jameson, J. L. (1997). Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A, 94 (25), 14138-43.
32. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39(1), 44-84.
33. Cheserek, M. J., Wu, G., Li, L., Li, L., Karangwa, E., Shi, Y., & Le, G. (2016). Cardioprotective effects of lipoic acid, quercetin and resveratrol on oxidative stress related to thyroid hormone alterations in long-term obesity. J Nutr Biochem, 33, 36-44.
34. Haohao, Z., Guijun, Q., Juan, Z., Wen, K., & Lulu, C. (2015). Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion. J Physiol Biochem, 71(1), 121-131.
35. 楊晉瑚. (2006). Resveratrol、 Piceatannol 及Arachidin-1 影響老鼠巨噬細胞. 國立嘉義大學食品科學系碩士論文.
36. Fu, Y., Wang, Y., Du, L., Xu, C., Cao, J., Fan, T., Liu, J., Su, X., Fan, S., Liu, Q., & Fan, F. (2013). Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation. Int J Mol Sci, 14(7), 14105-14118.
37. Hao, E., Lang, F., Chen, Y., Zhang, H., Cong, X., Shen, X., & Su, G. (2013). Resveratrol alleviates endotoxin-induced myocardial toxicity via the Nrf2 transcription factor. PLoS One, 8(7), e69452.
38. Sin, T. K., Yu, A. P., Yung, B. Y., Yip, S. P., Chan, L. W., Wong, C. S., Ying, M., Rudd, J. A., & Siu, P. M. (2014). Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart. J Physiol, 592(12), 2535-2548.
39. Ramis, M. R., Esteban, S., Miralles, A., Tan, D. X., & Reiter, R. J. (2015). Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev, 146-148, 28-41.
40. Park, E. J., & Pezzuto, J. M. (2015). The pharmacology of resveratrol in animals and humans. Biochim Biophys Acta, 1852(6), 1071-1113.
41. Wallerath, T. (2002). Resveratrol, a Polyphenolic Phytoalexin Present in Red Wine, Enhances Expression and Activity of Endothelial Nitric Oxide Synthase. Circulation, 106(13), 1652-1658.
42. Chang, G. R., Chen, P. L., Hou, P. H., & Mao, F. C. (2015). Resveratrol protects against diet‐induced atherosclerosis by reducing low‐density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E‐deficient mice. Iran J Basic Med Sci, 18(11), 1063-1071.
43. Dolinsky, V. W., Chakrabarti, S., Pereira, T. J., Oka, T., Levasseur, J., Beker, D., Zordoky, B. N., Morton, J. S., Nagendran, J., Lopaschuk, G. D., Davidge, S. T., & Dyck, J. R. (2013). Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim Biophys Acta, 1832(10), 1723-1733.
44. Shalwala, M., Zhu, S. G., Das, A., Salloum, F. N., Xi, L., & Kukreja, R. C. (2014). Sirtuin 1 (SIRT1) activation mediates sildenafil induced delayed cardioprotection against ischemia-reperfusion injury in mice. PLoS One, 9(1), e86977.
45. Arends, M. J., Morris, R. G., & Wyllie, A. H. (1990). Apoptosis: The role of the endonuclease. Am. J. Pathol., 136(3), 593-608.
46. Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol., 35(4), 495-516.
47. Mewton, N., Liu, C. Y., Croisille, P., Bluemke, D., & Lima, J. A. (2011). Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol, 57(8), 891-903.
48. Cheng, L., Jin, Z., Zhao, R., Ren, K., Deng, C., & Yu, S. (2015). Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int J Clin Exp Med, 8(7), 10420-10428.
49. Gu, J., Hu, W., & Zhang, D. D. (2015). Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity. J Cell Mol Med, 19(10), 2324-2328.
50. Liesa, M., Palacin, M., & Zorzano, A. (2009). Mitochondrial dynamics in mammalian health and disease. Physiol Rev, 89(3), 799-845.
51. Sherratt, H.S. (1991). Mitochondria: structure and function. Rev Neurol (Paris), 147(6-7), 417-30.
52. Ventura-Clapier, R., Garnier, A., & Veksler, V. (2008). Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res, 79(2), 208-217.
53. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R. C., & Spiegelman, B. M. (1999). Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell, 98(1), 115-124.
54. Ping, Z., Zhang, L. F., Cui, Y. J., Chang, Y. M., Jiang, C. W., Meng, Z. Z., Xu, P., Liu, H. Y., Wang, D. Y., & Cao, X. B. (2015). The Protective effects of salidroside from exhaustive exercise-induced heart injury by enhancing the PGC-1 alpha -NRF1/NRF2 pathway and mitochondrial respiratory function in rats. Oxid Med Cell Longev, 2015, 876825.
55. Li, H., Wang, J., Wilhelmsson, H., Hansson, A., Thore´n, P., Duffy, J., Rustin, P., & Larsson, N.-G. r. (2000). Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci U S A, 97(7), 3467-3472.
56. Ikeuchi, M., Matsusaka, H., Kang, D., Matsushima, S., Ide, T., Kubota, T., Fujiwara, T., Hamasaki, N., Takeshita, A., Sunagawa, K., & Tsutsui, H. (2005). Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation, 112(5), 683-690.
57. Ong, S. B., Subrayan, S., Lim, S. Y., Yellon, D. M., Davidson, S. M., & Hausenloy, D. J. (2010). Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation, 121(18), 2012-2022.
58. Gandre-Babbe, S., & van der Bliek, A. M. (2008). The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell, 19(6), 2402-2412.
59. Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz1, S., Las, G., Alroy, J., Wu, M., Py, B. n. d. F., Yuan, J., Deeney, J. T., Corkey, B. E., & Shirihai, O. S. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J., 2008(27), 2.
60. Chen, Y., Liu, Y., & Dorn, G. W., 2nd. (2011). Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res, 109(12), 1327-1331.
61. Ryan, J. J., Marsboom, G., Fang, Y. H., Toth, P. T., Morrow, E., Luo, N., Piao, L., Hong, Z., Ericson, K., Zhang, H. J., Han, M., Haney, C. R., Chen, C. T., Sharp, W. W., & Archer, S. L. (2013). PGC1alpha-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med, 187(8), 865-878.
62. Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G. V., Rudka, T., Bartoli, D., Polishuck, R. S., Danial, N. N., De Strooper, B., & Scorrano, L. (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell, 126(1), 177-189.
63. Spitz, D.R., & Oberley, L.W. (1989). An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem, 179(1), 8-18
64. Lawrence, R.A., & Burk, R.F. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun, 71(4), 952-8.
65. Owens, C.W., & Belcher, R.V. (1965). A colorimetric micro-method for the determination of glutathione. Biochem J, 94, 705-11
66. Raghav, S.K., Gupta, B., Shrivastava,A.,& Das, H.R. (2007). Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1 beta through suppression of NF-kappaB activaton by 3-(1’-1’-dimethyl-ally)-6-hydroxy 7-methoxy-coumarin isolated from Ruta graveolens L. Eur J Pharmacol, 560, 69-80.
67. Konyalioglu, S., Durmaz, G., Yalcin, A. (2007). The potential antioxidant effect of raloxifene treatment: a study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochem Funct, 25(3), 259-66.
68. Bell, J. R., Mellor, K. M., Wollermann, A. C., Ip, W. T., Reichelt, M. E., Meachem, S. J., Simpson, E. R., & Delbridge, L. M. (2011). Aromatase deficiency confers paradoxical postischemic cardioprotection. Endocrinology, 152(12), 4937-4947.
69. Delmas, D., Jannin, B., & Latruffe, N. (2005). Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res, 49(5), 377-395.
70. Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., Prabhu, V. V., Allard, J. S., Lopez-Lluch, G., Lewis, K., Pistell, P. J., Poosala, S., Becker, K. G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G., Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., de Cabo, R., & Sinclair, D. A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444(7117), 337-342.
71. Movahed, A., Yu, L., Thandapilly, S. J., Louis, X. L., & Netticadan, T. (2012). Resveratrol protects adult cardiomyocytes against oxidative stress mediated cell injury. Arch Biochem Biophys, 527(2), 74-80.
72. Zelko, I.N., Mariani, T.J., & Folz, R.J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med, 33(3), 337-49.
73. Van, R.H., Williams, M.D., Guo, Z., Estlack, L,, Yang, H., Carlson, E.J., Epstein, C.J., Huang, T.T,, & Richardson, A. (2001). Knockout mice heterozygous for Sod2 show alterations in cardiac mitochondrial function and apoptosis. Am J Physiol Heart Circ Physiol, 281(3), H1422-32.
74. Gioda, C. R., de Oliveira Barreto, T., Primola-Gomes, T. N., de Lima, D. C., Campos, P. P., Capettini Ldos, S., Lauton-Santos, S., Vasconcelos, A. C., Coimbra, C. C., Lemos, V. S., Pesquero, J. L., & Cruz, J. S. (2010). Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. Am J Physiol Heart Circ Physiol, 298(6), H2039-2045.
75. Lemmen, J.G., Broekhof, J.L., Kuiper, G.G., Gustafsson, J.A., van-der- Saag, P.T., & van-der-Burg B. (1999). Expression of estrogen receptor alpha and beta during mouse embryogenesis. Mech Dev, 1(1-2), 163-7
76. Cui, J., Shen, Y., & Li, R. (2013). Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med, 19(3), 197-209.
77. Sari, M., Hanna, S., Einari, A., Marjukka, M., Leena, S., Eero, T., Jan-Åke, G., & Pekka, H. (1999). Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors a and b. Proc. Natl. Acad. Sci. USA, 96, 7077-7082.
78. Ali, S., & Coombes, R.C. (2000). Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia, 5(3), 271-81.
79. Klinge, C. M. (2008). Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem, 105(6), 1342-1351.
80. Huss, J. M., Kopp, R. P., & Kelly, D. P. (2002). Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem, 277(43), 40265-40274.
81. John, J. L., Philip, M. B., Attila, K.,1 Jeffrey, E. S., Denis, M. M., & Daniel P. K. (2000). Peroxisome proliferator–activated receptor g coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest, 106, 847-856
82. Csiszar, A., Labinskyy, N., Pinto, J. T., Ballabh, P., Zhang, H., Losonczy, G., Pearson, K., de Cabo, R., Pacher, P., Zhang, C., & Ungvari, Z. (2009). Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol, 297(1), H13-20.
83. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., & Auwerx, J. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127(6), 1109-1122.
84. Higashida, K., Kim, S. H., Jung, S. R., Asaka, M., Holloszy, J. O., & Han, D. H. (2013). Effects of resveratrol and SIRT1 on PGC-1alpha activity and mitochondrial biogenesis: a reevaluation. PLoS Biol, 11(7), e1001603.
85. Hall, A. R., Burke, N., Dongworth, R. K., Kalkhoran, S. B., Dyson, A., Vicencio, J. M., Dorn Ii, G. W., Yellon, D. M., & Hausenloy, D. J. (2016). Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis, 7, e2238.
86. Dolinsky, V. W., Rogan, K. J., Sung, M. M., Zordoky, B. N., Haykowsky, M. J., Young, M. E., Jones, L. W., & Dyck, J.R. (2013). Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab, 305(2), E243-53.
87. Shimizu, Y., Lambert, J. P., Nicholson, C. K., Kim, J. J., Wolfson, D. W., Cho, H. C., Husain, A., Naqvi, N., Chin, L. S., Li, L., & Calvert, J. W. (2016). DJ-1 protects the heart against ischemia-reperfusion injury by regulating mitochondrial fission. J Mol Cell Cardiol, 97, 56-66.
88. Lee, S. D., Kuo, W. W., Ho, Y. J., Lin, A. C., Tsai, C. H., Wang, H. F., Kuo, C. H., Yang, A. L., Huang, C. Y., & Hwang, J. M. (2008). Cardiac Fas-dependent and mitochondria-dependent apoptosis in ovariectomized rats. Maturitas, 61(3), 268-277.
89. Fabris, B., Candido, R., Bortoletto, M., Toffoli, B., Bernardi, S., Stebel, M., Bardelli, M., Zentilin, L., Giacca, M., & Carretta, R. (2011). Stimulation of cardiac apoptosis in ovariectomized hypertensive rats: potential role of the renin-angiotensin system. J Hypertens, 29(2), 273-81.
90. Gomez-Crisostomo, N. P., Lopez-Marure, R., Zapata, E., Zazueta, C., & Martinez-Abundis, E. (2013). Bax induces cytochrome c release by multiple mechanisms in mitochondria from MCF7 cells. J Bioenerg Biomembr, 45(5), 441-448.
91. Charles, C., Devon, A. T., Huijun Z.R., Uta, Francke., & Ronald J. W. (1997). Identification of a Gene (GPR30) with Homology to the G-Protein-Coupled Receptor Superfamily Associated with Estrogen Receptor Expression in Breast Cancer. Genomics, 45(3), 607-17.
92. Olde, B., & Leeb-Lundberg, L. M. (2009). GPR30/GPER1: searching for a role in estrogen physiology. Trends Endocrinol Metab, 20(8), 409-416.
93. Bopassa, J. C., Eghbali, M., Toro, L., & Stefani, E. (2010). A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol, 298(1), H16-23.
94. Li, W. L., Xiang, W., & Ping, Y. (2015). Activation of novel estrogen receptor GPER results in inhibition of cardiocyte apoptosis and cardioprotection. Mol Med Rep, 12(2), 2425-2430.
95. Prossnitz, E. R., & Barton, M. (2011). The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol, 7(12), 715-726.
96. Prossnitz, E. R., & Arterburn, J. B. (2015). International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev, 67(3), 505-540.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊