(3.227.208.0) 您好!臺灣時間:2021/04/18 12:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林晉樑
論文名稱:一生物立體感測器系統於立體影像應用之設計及實現
論文名稱(外文):Design and Implementation of a Biologically Stereo Sensor System for Stereo Image Applications
指導教授:江政達江政達引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:視網膜平面感測器影像處理3D立體化
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一生物立體感測器系統於立體影像應用之設計及實現,為本論文提出之系統應用在3D立體化,本系統結合兩部分,一部分為視網膜平面感測器,另一部分為影像處理系統演算法,視網膜平面感測器偵測圖像,產生Frame start以及Serial out數位訊號,經由影像處理系統演算法進行影像前處理及產生二維平面圖像,找到最佳圖像,進行圖像深度分析,並將其立體化,本論文提出之視網膜平面感測器,採用TSMC 0.35 μm CMOS 2P4M標準製程,晶片面積為2.8 x 2.8 mm2晶片,其中包含1024個像素的像素陣列,單一像素晶片面積為70 x 68.7 μm2,操作在3 V直流電壓源下,總功率消耗10.7 mW,量測不同圖像訊號,本論文使用Microsoft Visual Studio 2008開發平台,自行開發設計圖形使用者介面(Graphical User Interface),功能包含通訊連接阜連結偵測、數位訊號判讀、二維圖像呈現、深度資訊分析、立體化演算法執行以及影像處理演算法中的,斷開演算法(Opening algorithm),坎尼演算法(Canny algorithm)等影像前處理。藉由結合視網膜平面感測器及影像處理系統演算法,進行圖像偵測、資料分析以及影像處理,以達到圖像3D立體化之目的。
摘 要 i
Abstract ii
目 錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 背景 1
1.2 研究動機 2
1.3 論文組織 4
第二章 生物立體感測器系統 6
2.1 視網膜平面感測器 7
2.1.1 視網膜平面感測器 7
2.2 後端影像處理系統演算法 8
2.2.1 後端影像處理系統演算法 8
2.2.2 斷開演算法 9
2.2.3 坎尼演算法 10
2.2.4 本論文提出之立體圖像演算法 11
第三章 系統設計實現與模擬 14
3.1 視網膜平面感測器電路設計與模擬 14
3.1.1 視網膜平面感測器設計 14
3.1.2 視網膜平面感測器之模擬 16
3.1.3 視網膜平面感測器之後模擬 21
3.2 後端影像處理系統設計 23
3.2.1 立體圖像演算法 23
第四章 電路佈局量測結果與影像處理系統 25
4.1 電路佈局 25
4.2 量測環境 31
4.2.1 量測儀器 31
4.2.2 後端影像處理系統 33
4.3 量測結果 36
4.3.1 視網膜平面感測器對圖像量測 36
4.3.2 後端影像處理系統量測 37
4.4 量測總結 42
第五章 結論 44
參考文獻 45
[1] E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, “Anartificial retina chip with current-mode focal plane image processing functions,” IEEE Pattern Recognition Principles Electron Devices, vol. 44, pp. 1777–1781, Oct. 1997.
[2] R. A. Panicacci, S. E. Kemeny, P. D. Jones, C. Staller, and E. R. Fossum, “128 Mb/s multiport CMOS binary active-pixel image sensor,” in ISSCC Dig. Tech. Papers, 1996, pp. 100–101.
[3] H. C. Jiang and C. Y. Wu, “A 2-D velocity- and direction-selective sensor with BJT-based silicon retina and temporal zero-crossing detector,” IEEE J. Solid-State Circuits, vol. 34, pp. 241–247, Feb. 1999.
[4] C. Y. Wu, H. C. Huang, L. J. Lin, and K. H. Huang, “A new Pseudo- Bipolar-Junction-Transistor (PBJT) and its application in the design of retinal smoothing network,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 4, July 2002, pp. 125–128.
[5] C. Y. Wu and C. F. Chiu, “A new structure of 2-D silicon retina,” IEEE J. Solid-State Circuits, vol. 30, pp. 890–897, Aug. 1995.
[6] P. Y. Burgi and F. Heitger, “A fast 100×100 pixel silicon retina for edge extraction with application in OCR,” in Proc. IEEE Int. Symp. Signal Processing and Its Applications, vol. 37, 2001, pp. 288–291.
[7] C. Y. Wu and H. C. Jiang, “An improved BJT-based silicon retina with tunable image smoothing capability,” IEEE Pattern Recognition Principles VLSI, vol. 7, pp. 241–248, June 1999.
[8] G. Liang and W. C. Miller, “A novel photo BJT array for intelligent imaging,” in Proc. IEEE Int. Symp. Circuits and System Systems, vol. 2, Aug. 1993, pp. 1056–1059.
[9] N. Ancona and T. Poggio, “Optical flow from 1D correlation: application to a simple time-to crash detector,” in Proc. 4th IEEE Int. Conf. Computer Vision, pp. 209-214, May 1993.
[10] M. D. Rowley and J. G. Harris, “An edge enhancement technique for analog VLSI early vision applications,” in Proc. IEEE Int. Symp. Neural Networks, vol. 2, June 1996, pp. 874–879.
[11] A. Mhani, G. Sicard, and G. Bouvier, “Analog vision chip for sensing edges contrasts and motion,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 4, Aug. 1997, pp. 2769–2772.
[12] R. A. Boie and W. Turin, “Noise-limited reading of bar codes,” IEEE Pattern Recognition Principles Ind. Electron., vol. 44, no. 6, pp. 816–824, Dec. 1997.
[13] R. E. Cummings, J. V. der Spiegel, P. Mueller, and M. Z. Zhang, “A foveated silicon retina for two-dimensional tracking,” IEEE Pattern Recognition Principles Circuits Syst. II, vol. 47, pp. 504–517, June 2000.
[14] J. H. Huang, Z. H. Liu, M. C. Jeng, K. Hui, M. Chan, P. K. Ko, and C. Hu, BSIM3 Version 3.2.2 MOSFET Model User’s Manual, 1999.
[15] C. Y. Wu and C. T. Chiang, “A low-photocurrent CMOS retinal focal-plane sensor with a pseudo-BJT smoothing network and an adaptive current Schmitt trigger for scanner applications,” IEEE Sensors Journal, vol. 4, no. 4, pp. 410–418, Aug. 2004.
[16] S.C. Liu, “A neuromorphic aVLSI model of global motion processing in the fly,” IEEE Transactions on Circuits and Systems II, vol. 47, no. 12, pp. 1458-1467, Dec. 2000.
[17] R. Etienne-Cummings, J. Van der Spiegel and P. Mueller, “A focal-plane visual motion measurement sensor,” IEEE Transactions on Circuits and Systems I, vol. 44, no. 1, pp. 55-66, Jan. 1997.
[18] J. Kramer, R. Sarpeshkar, and C. Koch, “Pulse-based analog VLSI velocity sensors,” IEEE Transactions on Circuits and Systems II, vol. 44, no. 2, pp. 86-101, Feb. 1997.
[19] S. Ando, “Consistent Gradient Operators,” IEEE Pattern Recognition Principles on Pattern analysis and machine intelligence, vol. 22, no. 3, pp. 252-264, March 2000.
[20] D. Marr and E. Hildreth, “Theory of Edge Detection,” in Proc. Royal Soc. London B., 207, pp. 187-217, 1980.
[21] K. A. Boahen, “A retinomorphic vision system,” IEEE Micro, vol. 16, pp. 30–39, Oct. 1996.
[22] C.Y. Wu and K.H. Huang, “A CMOS focal-plane motion sensor with BJT-based retinal smoothing network and modified correlation-based algorithm,” IEEE Sensors Journal, vol. 2, no. 6, Dec. 2002.
[23] R. E. Cummings, J. V. der Spiegel, and P. Mueller, “Hardware Implementation of a Visual-Motion Pixel Using Oriented Spatiotemporal Neural Filters,” IEEE Transactions on Circuits and Systems II, vol. 46, no. 9, pp. 1121-1136, Sep. 1999.
[24] N. Otsu, “A threshold selection method from gray level histogram,” IEEE transactions on System, Man, and Cybernetics, SMC-8, 1978, pp.62-66.
[25] J. T. Tou and R. C. Gonazlez, “Pattern Recognition Principles,” Reading MA:Addison-Wesley , 1974.
[26] M. H. Lei and T. D. Chiueh, “An Analog Motion Field Detection Chip for Image Segmentation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no. 5, May 2002.
[27] John Canny, ”A Computational Approach to Edge Detection,” IEEE transactions on Pattern Analysis And Machine Intelligence, vol. no. 6, pp. 679-698, Nov. 1986.
[28] S. Forstmann, Y. Kanou, O. Jun, S. Thuering, and A. Schmitt, “Real-Time Stereo by using Dynamic Programming,” in Proceedings of Computer Vision and Pattern Recognition Workshop on Real-Time 3D Sensor and Their Use, pp. 29-29, June 2004.
[29] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S.-K. Park, M. Kim and J. W. Jeon, “FPGA Design and Implementation of a Real-Time Stereo Vision System,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 1, pp. 15-26, Jan. 2010.
[30] R. M. Philipp and R. Etienne-Cummings, “Single-Chip Stereo Imager,” Analog Integrated Circuits and Signal Processing, vol. 39, no. 3, pp. 237-250, June 2004.
[31] F. Matsuura and N. Fujisawa, “Anaglyph stereo visualization by the use of a single image and depth information,” The Visualization Society of Japan Journal of Visualization, vol. 11, no. 1, pp. 79-86, July 2008.
[32] S. Battiato, A. Capra, S. Curti, and M La Cascia, “3d stereoscopic image pairs by depth-map generation,” in Proceedings of Analog Integrated Circuits and Signal, vol. 39, no. 3, pp. 237-250, Sep. 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔