(100.25.42.117) 您好!臺灣時間:2021/04/21 17:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭艷梅
研究生(外文):Yen-Mei Kuo
論文名稱:甘蔗苗期耐旱篩選技術之建立及耐旱機制之初探
論文名稱(外文):Establishment of screening system for drought-tolerance and preliminary studies on drought-tolerance mechanism in sugarcane (Saccharum officinarum L.) seedlings
指導教授:黃文理黃文理引用關係
指導教授(外文):Wen-Lii Huang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農藝學系研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
畢業學年度:104
語文別:中文
論文頁數:63
中文關鍵詞:甘蔗組織培養耐旱性氧化逆境抗氧化酵素同功異構酶
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
甘蔗(Saccharum officinarum L.)雖屬旱作,但於萌芽期、苗期、分蘗期及伸長期對乾旱逆境相當敏感,需足夠水分才能維持正常生長。本研究與台糖公司合作,選取ROC8、ROC10、ROC16及ROC23四個甘蔗品種,分別以土耕與組織培養苗篩選系統,進行其幼苗期耐旱能力比較,進一步探討不同耐旱能力之甘蔗品種於乾旱逆境下,抗氧化酵素表現之相關性。試驗結果顯示蔗莖定植後初期,ROC10有較強之萌芽勢與生長勢,但二週後各品種間幼苗株高即無顯著差異。以ROC10與ROC23一個月齡幼苗進行斷水處理後,隨著土壤水分含水率下降,地上部生長逐漸減緩,三週後葉片開始枯黃、葉綠素螢光(Fv/Fm)逐漸下降,惟兩品種無明顯差異;持續乾旱處理一個月後幼苗開始枯死、Fv/Fm顯著降低,ROC23可維持較高之光合效率,斷水兩個月後,ROC10均無植株存活,而ROC23存活率仍有30%。此外,乾旱處理下之ROC23根系明顯比ROC10長且茂密,此可能是ROC23較為耐旱的原因之一。本試驗進一步以四個品種 (ROC8, ROC10, ROC16 與ROC23),土耕栽培二個月齡幼苗進行斷水處理及組織培養苗於MS液態培養基添加15% 聚乙二醇 (PEG-6000) 模擬乾旱處理,均獲得類似之結果,即一月齡蔗苗或二月齡蔗苗ROC10苗期明顯比其他三個品種對乾旱逆境敏感,而ROC8為本試驗中最耐旱之甘蔗品種。本論文進一步篩選乾旱敏感型ROC10及乾旱耐受型ROC8組織培養苗於MS固態培養基中添加不同濃度山梨糖醇進行外觀比較與抗氧化酵素分析,結果符合前述不同篩選系統之結論,ROC8耐旱性顯著高於ROC10。從抗氧化相關酵素同功異構酶膠體活性分析結果,顯示ROC8在山梨糖醇處理下有較高的穀胱甘肽還原酶(GR)、過氧化氫酶(catalase)及抗壞血酸過氧化酶(APX)酵素表現,再一步基因表現分析結果顯示,ROC8在山梨糖醇處理下的ScPOD1基因表現顯著高於ROC10。綜合上述結果,本試驗比較甘蔗幼苗期不同乾旱逆境篩選系統,可得到一致之篩選結果,顯示本試驗中ROC8具最佳之耐旱性,而ROC10最敏感,並建立初步釐清甘蔗幼苗期耐旱與抗氧化能力有關之生理機制,有助於未來耐旱甘蔗育種之進行。
Although Sugarcane (Saccharum officinarum L.) is a dryland crop, however, it has a high water requirement and sensitive to drought stress. In cooperation with Taiwan Sugar Corporation, this study Compared drought tolerance among four Taiwanese cultivars, ROC8, ROC10, ROC16 and ROC23, at seedling stage by soil culture and tissue culture. The zymography and gene expression analysis of antioxidant enzymes were further determined under drought stress. The results showed that ROC10 have the strongest sprouting vigor at the early stage after transplanting, but no significant differences in plant height among varieties after two weeks. Under drought stress condition for 3 weeks, shoot growth was decreased, leaves turned wilting and yellowing, and chlorophyll fluorescence (Fv/Fm) was decreased. After one month of drought treatment, all ROC10 plants died, where as 30% of the ROC23 seedlings survived. In addition, it showed deeper roots and robust root system of ROC23 under drought treatment, indicating were that ROC23 is more tolerant to drought stress. Similar results observed in MS liquid medium supplemented with 15% polyethylene glycol (PEG-6000) among four varieties. ROC10 observed drought sensitive where as the ROC8 showed tolerant drought stress. Analysis of antioxidant enzyme activity between these two contrast cultivars showed that the phenotype stayed green and newly plantlets propagated in ROC8 under MSBN medium containing 6% sorbitol for one month, However, all explants showed browning and no newly sprouting bud produced in ROC10. Zymography analysis showed that the drought tolerance cultivar, ROC8, possessed higher enzyme activities of glutathione reductase (GR1/GR3), catalase (CAT) and ascorbate peroxidase (APX). Compared to ROC10 the expression levels of ScPOD1 gene in seedily were significantly higher in ROC8 under sorbitol treatment. At present study, we have success fully established the screening system for drought tolerance at bud sprouting and seedling stage of sugarcane. The possible relationship between drought tolerance and antioxidant enzymes activity were also clarified. The results could be very useful for further drought tolerance breeding in sugarcane.
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅱ
誌謝....................................................Ⅲ
表目錄..................................................Ⅳ
圖目錄..................................................Ⅴ
一、前言.................................................1
二、前人研究.............................................3
三、材料與方法..........................................12
四、結果................................................22
五、討論................................................27
六、參考文獻............................................31
附錄一.................................................63
台灣農家要覽。2005。農作物(一) 特用作物:甘蔗。財團法人豐年社。台北。台灣。
行政院農業委員會。2009。『農業統計年報』。台北市:行政院農業委
員會。
行政院農業委員會。2010。『農業統計年報』。台北市:行政院農業委
員會。
何希達、陳文松、劉萬發。1984。甘蔗葉片游離脯胺酸在乾旱處理下之
累積。台灣糖業試驗所研究彙報105: 1-12。
何希達、劉萬發、陳耀煌、陳文松。1987。乾旱處理下甘蔗葉片游離脯
胺酸之累積與甘蔗品種產量之關係。台灣糖業試驗所研究彙報116: 1-6。
胡金勝。2007。蔗作育種智慧財產之經營挑戰與思維。中華民國蔗糖技術學會論文集。台糖公司研究所。
胡金勝。2010。緬懷甘蔗名種【N:Co310】之歷史功績。台糖通訊1984期P38-P39。
張永松、蕭耀基、黃文理。2013。台灣野生蔗種原收集與農藝性狀分析。作物、環境生物資訊10:98-110。
張永松。2012。台灣野生蔗種原收集與遺傳變異性分析。國立嘉義大學農藝學系碩士論文。嘉義。台灣。
許孫源。2006。百年糖業:甘蔗育種,科學發展月刊,397期,P7~P13。
許義祥、康樂、趙丁山。1997。甘蔗品種(系)抗旱能力及水分反應鑑定法之研究。台灣糖業研究所研究彙報157: 67-85。
陳沐清、白錦章。1966。甘蔗抗旱性之研究。台灣糖業試驗所研究彙報40: 1-34。
黃文理,劉麗飛。1998。高蔗糖濃度促進水稻癒合組織再生植株之探討。中華農藝 8:91-100。
黃文理,劉麗飛。1999。高濃度蔗糖誘導水稻癒合組織再生植株過程中蛋白質圖譜之變化。中華農藝 9:221-231。
黃文理,劉麗飛。2006a。過氧化酵素可作為水稻癒合組織植株再生之標誌酵素。台灣農業化學與食品科學44(2):108-113。
黃文理,劉麗飛。2006b。滲透壓誘導水稻癒合組織植株再生過程中過氧化酵素之變化。作物、環境與生物資訊 3(1):1-8。
黃有總、徐建雲、陳超君、何雪銀。2002。幾個甘蔗新品種的抗旱性與抗寒性比較研究。廣西農業生物科學21: 101-104。
廖兆周、勞方亞、周耀輝、李奇傳、鄧海華、黃鴻能、符城、胡后祥、楊亞后、陳西文。2002。具有斑茅種質的耐旱甘蔗品系的選育。作物學報28: 841-846。
鄭仲孚、石鎖釗。1948。台灣甘蔗品種抗旱性之研究II 甘蔗捲葉與抗旱性關係。台灣糖業試驗所研究彙報3: 56-65。
鄭仲孚、林任圖。1948。台灣甘蔗品種抗旱性之研究I 甘蔗葉液濃度與抗旱性關係。台灣糖業試驗所研究彙報3: 48-55。
駱君驌。1982。甘蔗育種十年在屏東,三十年來細胞遺傳與育種。科學農業科技叢書第八號P1423-P1428。
羅傳成。1992a。台灣甘蔗育種研究之回顧與展望。台灣糖業研究所成立九十周年紀念論文集P1~P19。
羅傳成。1992b。甘蔗種原在台灣糖業研究所之引進、採集、保存與利用。台灣糖業研究所成立九十周年紀念論文集P27~P32。
蘇美惠。2009。生質能產業。2010 年台灣各產業景氣趨勢調查報告。財團法人台灣經濟研究院 32: 6。
蘇美惠。2011。從能源平衡與成本效益探討本土生質酒精之發展潛力。台灣經濟研究月刊33:5。
Abu G., F. Mekbib and A. Teklewold. 2014. Effect of genotype on in vitro propagation of elite sugarcane (Saccharum officinarum L. ) varieties of Ethiopian sugar estates. Intl. J. Technol. Enhance. Eng. Res. 2: 123-128.
Ahmad P., C. A. Jaleel, M. A. Salem, G. Nabi and S. Sharma. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30: 106-175.
Ai L., Z. H. Li, Z. X. Xie, X. L. Tian, A. E. Eneji and L. S. Duan. 2008. Coronatine alleviates polyethylene glycol-induced water stress in two rice (Oryza sativa L.) cultivars. J. Agron. Crop Sci. 194:360-368.
Ali S., M. A. S. Mia, M. A. Khan and M. M. Sahman. 1998. Effect of drought stress on some physiological parameters of sugarcane. Banglad. J. Sugarcane 18-20:98-105.
Amin M. M., M. Bayoumi and E. A. Mendhawi. 1970. Effect of irrigation intervals on sugarcane yield in UAR. ISSCT. XTV Congress pp. 850-852.
Anderson, M.D., T.K. Prasad and C.R. Stewart. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109: 1247-1257.
Arruda P. 2012. Genetically modified sugarcane for bioenergy generation. Curr. Opin. Biotechnol. 23: 315–322.
Bailly C. 2004. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14: 93-107.
Basnayake S.W., R. Moyle and R. G. Birch. 2011. Embryogenic callus proliferation and regenerations for genetic transformation of diverse sugarcane cultivars. Plant Cell Rep. 30: 439-448.
Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-287.
Behera K. K. and S. Sahoo. 2009. Rapid in vitro propagation of sugarcane (Saccharum officinarum L. cv. Nayana) through callus culture. Nat. Sci. 7:1-10.
Bradford M. M. 1976. A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Bray E. A. 2004. Genes commenly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 407: 2331-2341.
Cha-Um S. and C. Kirdmanee. 2008. Effect of osmotic stress on proline accumulation, photosynthetic abilities and growth of sugarcane plantlets (Saccharum officinarum L.). Pak. J. Bot. 40: 2541-2552.
Cheng D. G. and C. H. Kao. 2010. Effects of exogenous spermine on polyethylene glycol-induced responses in rice leaves. Crop Environ. Bioinform. 7:33-242.
Chiu C. W., S. T. Lin, S. L. Ho and W. L. Huang. 2015. The putative role of protein phosphatase 2A catalytic subunit isoform 2 as a negative regulator on osmotic stress tolerance in rice. J. Agric. Forest. NCYU 12(1): 27-45.
De Andrate J. C. F., J. Terto, J. V. Silva and C. Almeida. 2015. Expression profiles of sugarcane under drought conditions: variation in gene regulation. Genet. Mol. Biol. 38: 465-469.
D'Hont, A., D. Ison, K. Alix, C. Roux and J. C. Glaszmann. 1998. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41: 221.225.
Dias M. O. S., M. P. Cunha, C. D. F. Jesus, G. J. M. Rocha, J. G. C. Pradella, C. E. V. Rossel, R. M. Filho, A. Bonomi. 2011. Second generation ethanol in Brazil: Can it compete with electricity production? Bioresour. Technol. 102: 8964–8971.
Dias M.O.S., A.V. Ensinas, S.A. Nebra, R. Maciel Filho, C.E.V. Rossell and M.R.W. Maciel, 2009. Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem. Eng. Res. Design 87 : 1206–1216.
Errabli T., C. B. Gandonou, H. Essalmani, J. Abrini, M. Idaomar and N. Skali-Senhaji. 2006. Growth, proline and ion accumulation in sugarcane callus cultures under drought- induced osmotic stress and its subsequent relief. Afr. J. Biotechnol. 5: 1488-1493.
Evans H. 1938. Some aspects of the problem of drought resistance in sugarcane. Proc. Intl. Soc. Sugarcane Tech. 6th Congress pp. 802-808.
FAOSTAT : Food and Agricultural commodities production. 2013. http://faostat.fao.org/site/339/default.aspx
Farrell A. E., R. J. Plevin, B. T. Turner, A. D. Jones, M. O’Hare and D. M. Kammen. 2006. Ethanol can contribute to energy and environmental goals. Science 311: 506–508.
Foyer C. H. and G. Noctor. 2005. Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28: 1056-1071.
Foyer C. H., P. Descourviéres and K. J. Kunert. 1994. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ. 17:507-523.
Foyer C., M. Lelandais, C. Galap and K.J. Kunert. 1991. Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97: 863-872.
Gosal S. S., A. S. Sengar, K. S. Thind, B. Kumar, M. Pallavi. 2009. In vitro selection at cellular level for red rot resistance in sugarcane (Saccharum sp.). Plant Growth Regul. 58: 201–209.
Gowda V. R. P., A. Henry, A. Yamauchi, H. E. Shashidhar and R. Serraj. 2011. Root biology and genetic improvement for drought avoidance in rice. Field Crops Res. 122: 1-13.
Guimaraes E. R., M. A. Mutton, M. J. R. Mutton, M. I. T. Ferro, G. C. Ravaneli and J. A. da Silva. 2008. Free proline accumulation in sugarcane under water restriction and spittlebug infestation. Sci. Agric. 65: 628-633.
Hadiarto T. and L. S. P. Tran. 2011. Progress studies of drought-responsive genes in rice. Plant Cell Rep. 30: 297-310.
Harris J. A. and H. A. Lee. 1930. The properties of the tissue fluids of sugarcane in their possible relation to drought resistance. Hawaii. Plant Record. 34: 167-176.
Hossain M. A., M. A. S. Mia, S. M. Rahman and M. A. Hossain. 1995. Effect of drought on morphological characters of sugarcane. Banglad. J. Sugarcane 17: 98-102.
Hotta C. T. and C. G. Lembke. 2010. The biotechnology roadmap for sugarcane improvement. Trop. Plant Biol. 3: 75–87.
Hu X. W., Y. L. Yao, S. L. Xing, L. Xu and Y. Liu. 2015. Isolation and characterization of class III peroxidase gene (SoPOD-1 and SaPOD-1) cDNA in Saccharum officinarum and S. arundinaceum. Chinese Agric. Sci. Bull. 31: 139-144.
Huang W. L. and L. F. Liu. 2002. Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Bot. Bull. Acad. Sin. 43: 107-113.
Huang W. L., C. H. Lee, Y. R. Chen. 2012. Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tiss. Organ Cult. 108: 257-263.
Huang W. L., Y. C. Tsung, and L. F. Liu. 2002. Osmotic stress promotes shoot regeneration in immature embryo-derived callus in rice (Oryza sativa L.). J. Agric. Assoc. China. 3: 76-86.
Ijaz S., I. A. Rana, I. A. Khan and M. Saleem. 2012. Establishment of an in vitro regeneration system for genetic transformation of selected sugarcane genotypes. Genet. Mol. Res. 11:512-530.
Inman-Bamber N. G. 1982. Drought tolerance of commercial sugarcane varieties in South Africa. Proc. South Afr. Sugar Tech. Assoc. 112-117.
Jangpromma N. S. Kitthaisong, S. Daduang, P. Jaisil and S. Phammasirirak. 2007. 18 kDa protein accumulation in sugarcane leaves under drought stress conditions. KMITL Sci. Tech. J. 7: 44-54.
Kao C. H. 2015. Role of glutathione in abiotic stress tolerance of rice plants. J. Taiwan Agric. Res. 64: 167-176.
Khan I. A., M. U. Dahot, S. Yasmin, A. Khatri, N. Seema and M. H. Naqvi. 2006. Effect of sucrose and growth regulators on the micropropagation of sugarcane clones. Pak. J. Bot. 38:961-967.
Kolkunov W. 1905. Contributions to the problem of breeding drought resistant crop plants. I. Anatomical and physiological investigations of the degree of xerophily of certain cereals. Mem. Polvtech. Inst. Kiev. 5: 4.
Kumar R., R. Venuprasad and G. N. Atlin. 2007. Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crops Res. 103: 42-52.
Kyuper J. 1915. Contributions to the physiology of stomata in Saccharum officinarum L. Arch. Suiker Indus. Nedel Indie. 23: 1673-1700.
Lee S. T and W. L. Huang. 2013. Cytokinin, auxin, and abscisic acid affects sucrose metabolism conduce to de novo shoot organogenesis in rice (Oryza sativa L.) callus. Bot. Stud. 54:5
Lee S. T and W. L. Huang. 2014. Osmotic stress stimulates shoot organogenesis in callus of rice (Oryza sativa L.) via auxin signaling and carbohydrate metabolism regulation Plant Growth Regul. 73: 193-204
Luck H. 1974. Catalases. In: Bergmeyer H.U. (ed.), Methods of Enzymatic Analysis. Vol.2. Academic Press, New York.
Martin J. H. 1930. The comparative drought resistance of sorghums and corn. J. Am. Soc. Agron. 22: 993-1003.
Maximov N. A. 1929. The plant in relation to water (Ed. By R. H. Yapp) Chapter XII: Drought resistance in plants. p. 374-401.
Mehnaz S., B. Weselowski, F. Aftab, S. Zahid, G. Lazarovits and J. Iqbal. 2009. Isolation, characterization, and effect of fluorescent pseudomonads on micropropagated sugarcane. Can. J. Microbiol. 55: 1007-1011.
Melo C. G., M. H. P. Barbosa, S. Y. Motoike, M. V. Sabino, M. C. Ventrilla, L. A. Peternelli and M. A. R. Oliverira. 2011. Preculture sugarcane tissue in sucrose supplemented culture medium to induce desiccation tolerance. Crop Breed. Appl. Biotechnol. 11:320-329.
Michel B. E., M. R. Kaufmann. 1973. The Osmotic potential of polyethylene glycol 6000. Plant Physiol. 51: 914-916.
Mittler, R. and B.A. Zilinskas. 1993. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal. Biochem. 212: 540-546.
Murashige T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473-479.
National Renewable Energy Laboratory (RENL). 2011. Process design and economics for Biochemical conversion of lignocellulosic biomass to ethanol, dilute-Acid Pretreatment and enzymatic hydrolysis of Corn Stover. Accessed from http://www.nrel.gov/docs/fy11osti/47764.pdf. 43
Netto L. E. S. 2001. Oxidative stress response in sugarcane. Genet. Mol. Biol. 24: 93-102.
Nogueira F. T. S., V. E. De Rosa Jr., M. Menossi, E. C. Ulian and D. Arruda. 2003. RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol. 132: 1811-1824.
Patade V. Y., P. Suprasanna, V. A. Bapat and U. G. Kulkarni. 2006. Selection for abiotic (salinity and drought) stress tolerance and molecular characterization of tolerant lines in sugarcane. BARC. 273: 244-257.
Putter J. 1974. Peroxidases. In: Bergmeyer H.U. (ed.), Methods of Enzymatic Analysis. Vol.2. Academic Press, New York, pp. 685-690.
Racchi M. L. 2013. Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants 2: 340-369.
Ramesh P. 2000. Effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane. J. Agron. Crop Sci. 185: 83-89.
Rao S. and J. Ftz. 2013. In vitro selection and characterization of polyethylene glycol (PEG) tolerant callus lines and regeneration of plantlets from the selected callus lines in sugarcane (Saccharum officinarum L.). Physiol. Mol. Biol. Plants 19: 261–268.
Rocha P. S. G., R. P. Oliveira and W. B. Scivittaro. 2013. Sugarcane micropropagation using light emitting diodes and adjustment in growth-medium sucrose concentration. Cienc. Rural 43:1168-1173.
Ros Barceló A., M. A. Pedreño, R. Muñoz, F. Sabater. 1988. Lupin peroxidases. II. Binding of acidic isoperoxidases to cell walls. Physiol. Plant. 73, 238–244.
Rutherford R. S. 1989. The assessment of proline accumulation as a mechanism of drought resistance in sugarcane. Proc. South Afr. Sugar Tech. Assoc. 136-141.
Sales C. R. G., R. V. Ribeiro, J. A. G. Silveira, E. C. Machado, M. O. Martins and A. M. M. A. Lagôa. 2013. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiol. Biochem. 73: 326-336.
Saruhan N., R.Terzi, A. Saglam and A. Kadiogly. 2009. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress. Biol. Res. 42: 315-326.
Shehab G. G., O. K. Ahmed, and H. S. El-Beltagi. 2010. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Not. Bot. Hort. Agrobot. Cluj 38: 139-148.
Silva M., J. L. Jifon, V. Sharma, J. A. G. de Silva, M. M. Caputo, M. B. Damaj, E. R. Guimara˜es, M. I. T. Ferro. 2011a. Use of physiological parameters in screening drought tolerance in sugarcane genotypes. Sugar Tech. 13: 191–197.
Silva R., J. R. C. Ferreira Neto, V. Pandolfi, S. M. Chabregas, W. L. Burnquist, A. M. Benko-Iseppon and E. A. Kido. 2011b. Transcriptomics of sugarcane osmoprotectants under drought. In: Plants and Environment Chapter 4. Eds. by H.K.N. Vasanthaiah and D. Kambiranda. In Tech Publish, Rijeka, Croatia.
Simon S. and G. Hemaprabha. 2010. Identification of two new drought specific candidate genes in sugarcane (Saccharum spp.). Electro. J. Plant Breed. 1: 1164-1170.
Singh B., G. C. Yadav, and M. Lai. 2001. An efficient protocol for micropropagation of sugarcane using shoot tip explant. Sugar Tech. 3: 113-116.
Srivastava S., A. D. Pathak, P. S. Gupta, A. K. Shrivastava and A. K. Srivastava. 2012. Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J. Environ. Biol. 33: 657-661.
Su Y. C., J. L. Guo, H. Ling, S. S. Chen, S. S. Wang, L. P. Xu, A. C. Allan and Y. X. Que. 2014. Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLOS ONE 9(1):e84426.doi:10.1371/journal.pone.0084426.
Thordal-Christensen H., Z. Zhang, Y. Wei, D. B. Collinge. 1997. Subcellular localization of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley-powdery mildew interaction. Plant J. 11: 1187–1194.
Turner N. C. 1997. Further progress in crop water relations. Adv. Agron. 58: 293–339.
Walsh M. E., B. C. English, R. J. Menard, C. Brandt, R. Wooley, A. Turhollow and D. de la Torre Ugarte. 2000. Corn stover to ethanol: macroeconomic impacts resulting from industry establishment. In: Proceedings of Bioenergy 2000. Northeast Regional Biomass Program.
Wang S., K. K. Zhang, X. Huang, Y. J. Fan, L. T. Yang and Y. R. Li. 2015. Cloning and functional analysis of thylakoidal ascorbate peroxidase (TAPX) gene sugarcane. Sugar Tech. 7: 356-366.
Wang Z. Z., S. Z. Zhang, B. P. Yang and Y. R. Li. 2005. Trehalose synthase gene transfer mediated by Agrobacterium tumefaciens enhances resistance to osmotic stress in sugarcane. Sugar Tech. 7(1): 49-54.
Xiao B. Z., X. Chen, C. B. Xiang, N. T. Tang, Q. F. Zhang, and L. Z. Xiong. 2009. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol. Plant 2: 73-83.
Ye N., G. Zhu, Y. Liu, A. Zhang, Y. Li, R. Liu, L. Shi, L. Jia and J. Zhang. 2012. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J. Exp. Bot. 63: 1809-1822.
Yu Z. J., Y. Chen, Y. T. Yang, Y. C. Su, S. S. Chen, J. B. Wu and L. P. Xu. 2015. Cloning and expression analysis of ascorbate peroxidase gene (ScAPX) in sugarcane (Saccharum officinarum L.). J. Agric. Biotechnol. 23: 170-180.
Zhang S. Z., B. P. Yang, C. L. Feng, R. K. Chen and L. P. Luo. 2006. Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). J. Integ. Plant Biol. 48: 453−459.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔